1. [1]. El-Bendary, N. and N.A. Belal, A feature-fusion framework of clinical, genomics, and histopathological data for METABRIC breast cancer subtype classification. Applied Soft Computing, vol.91, pp.106238, 2020.
2. [2]. Singh, D. and A.K. Singh, Role of image thermography in early breast cancer detection-Past, present and future. Computer methods and programs in biomedicine, vol. 183, pp.105074, 2020.
3. [3]. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pacific journal of cancer prevention: APJCP. 2019;20(7):2015. [
DOI:10.31557/APJCP.2019.20.7.2015] [
PMID] [
]
4. [4]. Forouzanfar, M.H., et al., Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. The lancet, vol. 378(9801), pp.1461-1484, 2011.
5. [5]. Delen, D., G. Walker, and A. Kadam, Predicting breast cancer survivability: a comparison of three data mining methods. Artificial intelligence in medicine, vol.34(2), pp.113-127, 2005.
6. [6]. Campone, M., et al., Taxanes in adjuvant breast cancer setting: which standard in Europe? Critical reviews in oncology/hematology, vol.55(3), pp.167-175, 2005.
7. [7]. Mohammadpour, A., et al., Breast Cancer, Genetic Factors and Methods of Diagnosis. Sarem Journal of Reproductive Medicine,vol. 4(4): 198-207, 2020.
8. [8]. Mukherjee, A., et al., Associations between genomic stratification of breast cancer and centrally reviewed tumour pathology in the METABRIC cohort. NPJ breast cancer, vol.4(1) ,pp. 1-9, 2018.
9. [9]. Rakha, E.A. and A.R. Green, Molecular classification of breast cancer: what the pathologist needs to know. Pathology, vol.49(2), pp.119, 2017.
10. [10]. Hao, J., et al., Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. BMC medical genomics,vol. 12(10) ,pp. 1-13,2019.
11. [11]. Collett, D., Modelling survival data in medical research. 2015: CRC press.
12. [12]. Stevenson, M. and I. EpiCentre, An introduction to survival analysis. EpiCentre, IVABS, Massey University,2009.
13. [13]. Goel, M.K., P. Khanna, and J. Kishore, Understanding survival analysis: Kaplan-Meier estimate. International journal of Ayurveda research,vol.1(4), pp.274, 2010.
14. [14]. Therneau, T.M. and P.M. Grambsch, The cox model, in Modeling survival data: extending the Cox model,pp. 39-7,2000.
15. [15]. O'Brien, R.C., et al., Random Survival Forests Analysis of Intraoperative Complications as Predictors of Descemet Stripping Automated Endothelial Keratoplasty Graft Failure in the Cornea Preservation Time Study. JAMA ophthalmology,vol.139(2) ,pp.191-197,2021.
16. [16]. Gensheimer MF, Narasimhan B. A scalable discrete-time survival model for neural networks. PeerJ. 2019 Jan 25;7:e6257.
17. [17]. Faraggi, D. and R. Simon, A neural network model for survival data. Statistics in medicine,vol.14(1) ,pp.73-82, 1995.
18. [18]. Street, W.N. A Neural Network Model for Prognostic Prediction. in ICML. 1998. Citeseer.
19. [19]. Fotso, S., Deep neural networks for survival analysis based on a multi-task framework. arXiv preprint arXiv:1801.05512, 2018.
20. [20]. Yu, C.-N., et al., Learning patient-specific cancer survival distributions as a sequence of dependent regressors. Advances in neural information processing systems, vol.24, pp.1845-1853, 2011.
21. [21]. Katzman, J.L., et al., DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC medical research methodology, vol.18(1), pp.121, 2018.
22. [22]. Luck M, Sylvain T, Cardinal H, Lodi A, Bengio Y. Deep learning for patient-specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245. 2017 May 29.
23. [23]. Lee, C., et al. Deephit: A deep learning approach to survival analysis with competing risks. in Thirty-second AAAI conference on artificial intelligence,2018.
24. [24]. Bilal, E., et al., Improving breast cancer survival analysis through competition-based multidimensional modeling. PLoS computational biology, vol.9(5), pp.10030-47, 2013.
25. [25]. Lu, J., et al., An efficient kernel discriminant analysis method. Pattern Recognition, vol. 38(10) ,pp.1788-179,2005.
26. [26]. Lee, M.-L.T. and G.A. Whitmore, Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Statistical Science,21(4) ,pp.501-513, 2006.