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Abstract

As we know, credit cards speed up and make life easier for citizens and bank customers. They can use it
anytime and anyplace according to their personal needs, instantly, quickly without worrying about
carrying a lot of cash with more security. Together, these factors make credit cards one of the most
popular forms of online banking. This reason has led to widespread and increasing use for easy payment
for purchases made through mobile phones, the Internet, ATMs, and so on. Despite the popularity and
ease of payment with credit cards, various security problems are increasing day by day. One of the most
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important and constant challenges in this field is fraud detection in credit card transactions all around
the world. Due to the increasing security issues in credit cards, fraudsters are also updating themselves.
In general, as the popularity of using credit cards grows, more fraudsters are attracted to it, and credit
card security comes into play. So naturally, this worries banks and their customers around the world.
Meanwhile, financial information acts as the main factor in market financial transactions. For this
reason, many researchers have tried to prioritize various solutions for detecting, predicting, and
preventing credit card fraud in their research work and provide essential suggestions that have been
associated with significant success. One of the practical and successful methods is data mining and
machine learning. One of the most critical parameters in fraud prediction and detection in these
methods is fraud detection accuracy. This research intends to examine the Gradient Boosting methods,
such as LightGBm and XGBoost, a subset of Ensemble Learning and machine learning methods. By
combining these methods, we can identify credit card fraud transactions, reduce error rates, and
improve the detection process, which in turn increases efficiency and accuracy. This study compared
some typical methods like Random Forest, Logistic Regression, and Navie base with LightGBM and
XGBoost algorithms. In this paper, we proposed to merge LightGBM and XGBoost using simple and
weighted averaging techniques and then evaluate the models using AUC, Recall, F1-score, Precision, and
Accuracy. The proposed model provided values of 95.08, 90.57, 89.35, 88.28, and 99.27, respectively. In
addition, we developed features by feature engineering techniques and then applied the feature
engineering phase to the models. The results show that applying the feature engineering phase to the

weighted average approach significantly improved prediction and detection accuracy

Keywords: Fraud Detection, Credit Card, Ensemble Learning, Data Mining
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Algorithm 1. The training of LightGBM

Require: input: Training set {(x; .y, )}

N
i=1

Ensure: output: LightGBM model y

Step 1. Initialize the first tree as a constant:

yAi(O) =f,=0

Step 2. Train the next tree by minimizing the loss
function:

f)=agminL(y,, v +f, (x,)

Step 3. Get the next model in an additive manner:
yi(t) Zyi(lil) +ft (Xi )
Step 4. Repeat the Step 2 and Step 3 until the

model reaches the stop condition.
Step 5. Obtain and return the final model:
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KL Ollecls

Stepl: Y =M (x)+error

Step2:  ermor =G (x )+error2

Step3: emor2=H (x)+error3

Stepd: Y =M (x)+G(x)+H (x)+error3

LightGBM-¥—y

aS el Lol Coed slapiy Xl 51 S LightGBM
Gl a5 sl (6 S pemal S0 02,68l bl
S50 Oele (65 50L ;00 oI5 51 (g5l 9 (gO100,
ools glgil 3l gllgunS” o y6Sl ] 0,05 oo 1,8 ool
9y = A8l Bras fall corge a5 WS oo eal 2 )
D9 s—o g Array Pandas Numpy s_ile ools Ll
) an ol S g b Laid oS col ol el ol Jdo
2 oS S yS (yB iy Ghg—al 0,5 0,3
o=l el pl S g o2 56 X1 5l eolaiul LightGBM
)JOLDA l_> (DY S9—>g0 )_u XGBoost o 4_..:;
u_:‘ Cwlodd u_:).n J_J )‘ 6Lm‘;).15 uo)Juw.u
oolaiwl ez 0 o e slapn oS 51 L o 5651
YU jles 215 hyls «cds ogdle LIGtGBM .aiS' o
oo ety o8l bl iy oSl cnl s [27] sl 50
o [y B 0 s Ly 5o 00 cu S i

OF 2ls ¥ o, VY Jlo


http://dx.doi.org/10.61186/jsdp.19.4.121
https://jsdp.rcisp.ac.ir/article-1-1235-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.61186/jsdp.19.4.121 ]

1) s shs 9031 (Sexs Gl Y9 s )3

el glacs)ls ) s gla yiu

XGBO0O0St 53901 s yg51 .Y s 95!
Algorithm 1. The training of XGBoost

Require: input: Training set {(x; .y, )}iN:1
Ensure: output: XGBoost model y
Step 1. Initialize the first tree as a constant:
yO =f
I
Step 2. Train the next tree by minimizing the loss
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Step 3. Get the next model in an additive manner:
V'(t) — y_(t -1

Step 4. Repeat the Step 2 and Step 3 until the model

reaches the stop condition.
Step 5. Obtain and return the final model:
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Table 2- The best parameters of the LightGBM
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Table 4. The Result of LightGBM

S P9 i 31 oolaiwl (9 S P9 ewdige 31 oolaiw! b

Fold | AUC Acc. Recall Prec. F-Meas.| AUC Acc. Recall Prec. F-Meas.
91.14 98.10 83.82 57.05 67.89 |92.24 98.23 85.95 59.07 70.02
92.19 98.90 84.91 87.34 86.11 |93.09 99.07 86.60 89.86 88.20
93.32 99.10 87.06 88.87 87.95 |94.24 99.21 88.87 90.09 89.47
93.60 98.89 87.87 84.39 86.10 |95.12 99.21 90.69 89.33 90.01
93.11 9897 86.81 83.98 8537 |94.00 99.10 88.53 85.85 87.17
Avg | 92.67 98.79 86.09 80.33 82.68 | 93.74 98.96 88.13 82.84 84.97
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Table 5. The Result of XGBoost
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Fold | AUC Acc. Recall Prec. F-Meas.| AUC Acc. Recall Prec. F-Meas.
93.13 98.28 87.72 59.70 71.05 | 94.90 98.38 91.25 60.79 72.97
93.31 99.09 87.02 90.10 88.54 |94.37 99.19 89.13 9051 89.82
9424 99.21 88.87 90.09 89.47 |94.98 99.28 90.33 90.54 90.44
92.96 99.05 86.35 89.06 87.68 | 94.81 99.21 90.04 89.75 89.89
94.13 99.11 88.77 8598 87.36 | 95.16 99.26 90.74 88.31 89.51
Avg | 9355 9895 87.75 8299 84.82 |94.84 99.06 90.30 83.98 86.53
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Table 6. The Result of Simple Average Method
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Fold | AUC Acc. Recall Prec. F-Meas.| AUC Acc. Recall Prec. F-Meas.
9356 99.12 87.72 78.39 82.79 | 9437 99.18 89.31 79.27 83.99
93.84 99.14 88.08 90.31 89.18 | 94.32 99.20 89.03 90.85 89.93
9469 99.25 89.77 90.28 90.02 | 95.21 99.31 90.79 90.85 90.82
93.72 99.12 87.87 89.42 88.64 | 94.22 99.17 88.85 89.98 89.41
94,78 99.23 90.00 88.12 89.05 | 95.35 99.29 91.11 88.73 89.91
Avg | 94.12 99.17 88.69 87.30 87.94 | 94.69 99.23 89.82 87.94 88.81
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Table 7. The Result of Weighted Average Method
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Fold | AUC Acc. Recall Prec. F-Meas.| AUC Acc. Recall Prec. F-Meas.
93.92 99.15 88.42 78.78 83.32 |94.90 99.22 90.37 79.76 84.73
93.95 99.15 88.29 90.43 89.34 |94.65 99.23 89.66 91.14 90.40
94.81 99.26 90.00 90.40 90.20 |95.56 99.34 9146 091.15 91.31
93.83 99.13 88.09 89.55 88.81 |94.55 99.21 89.50 90.28 89.89
9491 99.25 90.25 88.25 89.24 |95.72 99.33 91.85 89.07 90.44
Avg | 94.28 99.19 89.01 87.48 88.18 | 95.08 99.27 90.57 88.28 89.35

OB WN P

Jalase gy aw 9 Olduiy Joo sl (2l S amalio A Jgu
Table 8. the comparison of total results of four proposed methods and other three common methods
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Method AUC Acc. Recall Prec. F-Meas.| AUC Acc. Recall Prec. F-Meas.

Naive base 86.87 9553 74.62 7744 70.85 |87.60 98.43 7598 7886 7691
Random Forest | 88.83 9851 78.44 78.40 7842 |90.37 98.65 81.42 8254 8197
Logistic Regression| 89.92 97.21 79.85 89.84 81.79 |[91.36 98.81 83.36 8231 82.83

LightGBM 92.67 98.79 86.09 80.33 82.68 | 93.74 98.96 88.13 82.84 84.97
XGBoost 93.55 98.65 87.75 82.99 84.82 | 94.84 99.06 90.30 83.98 86.53

Simple Average | 94.12 99.21 88.69 87.30 87.94 |94.69 99.23 89.82 87.94 88.81
. Weighted Average| 94.28 99.19 89.01 87.48 88.18 | 95.08 99.27 90.57 88.28 89.35
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