دوره 20، شماره 1 - ( 3-1402 )                   جلد 20 شماره 1 صفحات 58-39 | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه شهید باهنر کرمان
چکیده:   (573 مشاهده)
با توجه به افزایش روزافزون اطلاعات و تحلیل دقیق آنها مسأله خوشه ­بندی که برای آشکارسازی الگوهای پنهان موجود در داده ­ها مورد استفاده قرار می­ گیرد، همچنان از اهمیت بالایی برخوردار است. از طرفی خوشه ­بندی داده ­های با ابعاد بالا با استفاده از روش­های سنتی پیشین دارای محدودیت ­های زیادی است. در مقاله حاضر، یک روش خوشه­ بندی گروهی نیمه­ نظارتی برای مجموعه ­ای از داده­ های پزشکی با ابعاد بالا پیشنهاد می ­شود. در فرموله­ سازی مسأله خوشه­ بندی اطلاعات نظارتی اندکی به عنوان دانش پیشین با استفاده از اطلاعات مربوط به تشابه و یا عدم تشابه (بصورت تعدادی زوج محدودیت­ های دوبه­ دو) در نظر گرفته می­شود. در ابتدا با استفاده از خاصیت تراگذری زوج محدودیت­ های دوبه ­دو را بر روی تمام داده ­ها تعمیم می ­دهیم. سپس با تقسیم فضای ویژگی به صورت تصادفی به چندین زیرفضای نابرابر ابعاد داده ­ها را کاهش می­ دهیم. خوشه­ بندی طیفی نیمه­ نظارتی مبتنی بر گراف لاپلاسی- p در هر زیر فضا بطور مستقل انجام می ­شود. سپس با استفاده از نتایج هر کدام یک ماتریس مجاورت، حاصل از تجمیع نتایج هر کدام (مبتنی بر یادگیری گروهی) ایجاد می ­شود. در نهایت با استفاده از چند عملگر جستجو روی زیرفضاها، بهترین زیرفضا، یعنی زیرفضایی که بهترین نتیجه خوشه­ بندی را دارد، می­ یابیم. نتایج آزمایشات متعدد بر روی چندین داده ­ی پزشکی با ابعاد بالا نشان می­ دهد که رویکرد پیشنهادی، عملکرد و کارآیی بهتری نسبت به روش­های پیشین دارد.
شماره‌ی مقاله: 3
متن کامل [PDF 2069 kb]   (238 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه علائم حیاتی ( مرتبط با مهندسی پزشکی)
دریافت: 1399/9/26 | پذیرش: 1401/7/16 | انتشار: 1402/5/22 | انتشار الکترونیک: 1402/5/22

فهرست منابع
1. [1] C. Chrysouli and A. Tefas, "Spectral clustering and semi-supervised learning using evolving similarity graphs," Applied Soft Computing, vol. 34, pp. 625-637, 2015. [DOI:10.1016/j.asoc.2015.05.026]
2. [2] W. Hu, C. Chen, F. Ye, Z. Zheng, and G. Ling, "Nonnegative Spectral Clustering for Large-Scale Semi-supervised Learning," in International Conference on Database Systems for Advanced Applications, 2019: Springer, pp. 287-291. [DOI:10.1007/978-3-030-18590-9_30]
3. [3] E. Hancer, B. Xue, and M. Zhang, "A survey on feature selection approaches for clustering," Artificial Intelligence Review, pp. 1-27, 2020.
4. [4] G. Chao, S. Sun, and J. Bi, "A survey on multi-view clustering," arXiv preprint arXiv:1712.06246, 2017.
5. [5] X. He, S. Zhang, and Y. Liu, "An adaptive spectral clustering algorithm based on the importance of shared nearest neighbors," Algorithms, vol. 8, no. 2, pp. 177-189, 2015. [DOI:10.3390/a8020177]
6. [6] H. Jia, S. Ding, H. Zhu, F. Wu, and L. Bao, "A Feature Weighted Spectral Clustering Algorithm Based on Knowledge Entropy," JSW, vol. 8, no. 5, pp. 1101-1108, 2013. [DOI:10.4304/jsw.8.5.1101-1108]
7. [7] Z. Yu et al., "Probabilistic cluster structure ensemble," Information Sciences, vol. 267, pp. 16-34, 2014. [DOI:10.1016/j.ins.2014.01.030]
8. [8] J.E. Van Engelen and H.H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, no. 2, pp. 373-440, 2020. [DOI:10.1007/s10994-019-05855-6]
9. [9] S. Ding, B. Qi, H. Jia, H. Zhu, and L. Zhang, "Research of semi-supervised spectral clustering based on constraints expansion," Neural Computing and Applications, vol. 22, no. 1, pp. 405-410, 2013. [DOI:10.1007/s00521-012-0911-8]
10. [10] Y. Jia, S. Kwong, and J. Hou, "Semi-supervised spectral clustering with structured sparsity regularization," IEEE Signal Processing Letters, vol. 25, no. 3, pp. 403-407, 2018. [DOI:10.1109/LSP.2018.2791606]
11. [11] Y. Jia, S. Kwong, J. Hou, and W. Wu, "Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization," IEEE Transactions on Neural Networks and Learning Systems, 2019. [DOI:10.1109/TNNLS.2019.2933223] [PMID]
12. [12] M.S. Baghshah, F. Afsari, S. B. Shouraki, and E. Eslami, "Scalable semi-supervised clustering by spectral kernel learning," Pattern Recognition Letters, vol. 45, pp. 161-171, 2014. [DOI:10.1016/j.patrec.2014.02.014]
13. [13] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, "A survey on semi-supervised feature selection methods," Pattern Recognition, vol. 64, pp. 141-158, 2017. [DOI:10.1016/j.patcog.2016.11.003]
14. [14] S. Faußer and F. Schwenker, "Semi-supervised clustering of large data sets with kernel methods," Pattern recognition letters, vol. 37, pp. 78-84, 2014. [DOI:10.1016/j.patrec.2013.01.007]
15. [15] M. Sugiyama, G. Niu, M. Yamada, M. Kimura, and H. Hachiya, "Information-maximization clustering based on squared-loss mutual information," Neural Computation, vol. 26, no. 1, pp. 84-131, 2014. [DOI:10.1162/NECO_a_00534] [PMID]
16. [16] T. Bühler and M. Hein, "Spectral clustering based on the graph p-Laplacian," in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 81-88.
17. [17] J. Jost, R. Mulas, and D. Zhang, "p-Laplace Operators for Chemical Hypergraphs," arXiv preprint arXiv:2007.00325, 2020.
18. [18] S. Saito, D. P. Mandic, and H. Suzuki, "Hypergraph p-Laplacian: A Differential Geometry View," arXiv preprint arXiv:1711.08171, 2017. [DOI:10.1609/aaai.v32i1.11823]
19. [19] S. Ding, H. Jia, M. Du, and Q. Hu, "p-Spectral Clustering Based on Neighborhood Attribute Granulation," in International Conference on Intelligent Information Processing, 2016: Springer, pp. 50-58. [DOI:10.1007/978-3-319-48390-0_6]
20. [20] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Frontiers of Computer Science, pp. 1-18, 2020.
21. [21] H. Niu, N. Khozouie, H. Parvin, H. Alinejad-Rokny, A. Beheshti, and M. R. Mahmoudi, "An Ensemble of Locally Reliable Cluster Solutions," Applied Sciences, vol. 10, no. 5, p. 1891, 2020. [DOI:10.3390/app10051891]
22. [22] Z. Yu, Z. Kuang, J. Liu, H. Chen, J. Zhang, J. You, H.S. Wong and G. Han, "Adaptive ensembling of semi-supervised clustering solutions. IEEE Transactions on Knowledge and Data Engineering", vol. 29, no. 8, pp. 1577-1590, 2017. [DOI:10.1109/TKDE.2017.2695615]
23. [23] Z. Yu, P. Luo, J. You, H.S. Wong, H. Leung, S. Wu, J. Zhang, and G. Han, "Incremental semi-supervised clustering ensemble for high dimensional data clustering," IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 3, pp. 701-714, 2015. [DOI:10.1109/TKDE.2015.2499200]
24. [24] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, "EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling," Pattern recognition, vol. 46, no. 12, pp. 3460-3471, 2013. [DOI:10.1016/j.patcog.2013.05.006]
25. [25] S. Safari, and F. Afsari. "Ensemble P-spectral Semi-supervised Clustering." In 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1-5. IEEE, 2020. [DOI:10.1109/MVIP49855.2020.9116885] [PMID]
26. [26] M. C. de Souto, I. G. Costa, D. S. de Araujo, T. B. Ludermir, and A. Schliep, "Clustering cancer gene expression data: a comparative study," BMC bioinformatics, vol. 9, no. 1, p. 497, 2008. [DOI:10.1186/1471-2105-9-497] [PMID] []
27. [27] N. X. Vinh, J. Epps, and J. Bailey, "Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance," The Journal of Machine Learning Research, vol. 11, pp. 2837-2854, 2010. [DOI:10.1145/1553374.1553511]
28. [28] L. Hubert and P. Arabie, "Comparing partitions," Journal of classification, vol. 2, no. 1, pp. 193-218, 1985. [DOI:10.1007/BF01908075]
29. [29] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, "Learning a mahalanobis metric from equivalence constraints," Journal of Machine Learning Research, vol. 6, no. Jun, pp. 937-965, 2005.
30. [30] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, "Information-theoretic metric learning," in Proceedings of the 24th international conference on Machine learning, 2007, pp. 209-216. [DOI:10.1145/1273496.1273523]
31. [31] S. C. Hoi, W. Liu, M. R. Lyu, and W.-Y. Ma, "Learning distance metrics with contextual constraints for image retrieval," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, vol. 2: IEEE, pp. 2072-2078.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.