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Abstract

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech
utterance into transcription. So far, various methods such as hidden Markov models and artificial
neural networks have been used to develop speech recognition systems. In most of these systems, the
speech signal frames are processed uniformly, while the information is not evenly distributed in all of
them. Auditory experiments have also shown that the human brain pays more attention to information-
rich areas. By focusing on these areas instead of uniform processing, the brain can more robustly
recognize speech in intrinsic and environmental speech variations such as speaker and noise. In
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contrast, the performance of most speech recognition systems degrades dramatically in these conditions.
Therefore, to boost speech recognition systems' robustness, some researchers have focused on
developing speech recognition systems by modeling these informative parts of the speech signal named
landmarks. Similarly, in this article, we implemented a landmark-based system to obtain a robust
Persian speech recognition system inspired by human brain perception. We also conducted neural
networks-based variation compensation methods to boost its performance.

In this article, acoustic landmarks are classified into two categories of events and states with the
following definitions. Events are defined as areas of the speech signal in which the spectral
characteristics change drastically while their length does not change a lot. The transition areas between
some adjacent pairs of phones (phones' borders) are primarily selected as events. States are also defined
as areas of the speech signal that spectral characteristics do not change significantly. Here the nuclei of
phones are considered as the states. Previous research, linguistic sources, and implementation results
have been used to determine the Persian language's appropriate landmarks. Finally, a set of 313
landmarks was selected and used in our acoustic landmarks-based phone recognition system .

The neural network structure used to recognize acoustic landmarks is a feed-forward fully connected
structure with ReLU function in its hidden layers and a linear function in its final layer. The number of
layers and neurons of this structure has been determined experimentally. The best structure is
composed of 5 fully connected layers with 1000 neurons per layer. In this study, instead of considering
313 neurons to express each of the 313 landmarks, a heuristic labeling method is used to reduce the
number of output neurons and utilize the shared information between the landmarks. The landmark
recognition model slides on the speech feature sequence in the test phase to produce the output
landmark sequence. Finally, to convert the obtained landmark sequence to a phone sequence, three rule-
based post-processing steps are performed .

Variabilities are among the essential quality degradation sources in speech recognition; therefore, we
proposed two approaches to reduce them and boost phone recognition quality in our landmark-based
system. To this aim, we have utilized the nonlinear filtering characteristic of neural networks by
implementing four neural network schemes. In scheme 1, a feed-forward neural network is first trained
to map training landmarks to their corresponding well-recognized samples. Then this structure can act
as a nonlinear filter before the landmark recognition block. In scheme 2, a unified structure is
simultaneously trained to learn landmark labels and the filtering part. In both of these schemes, we used
a recursive loop to increase the chance of attractor manipulation in the structures. In scheme 3, a
recursive loop is added to one hidden layer. This loop acts as an input variability simulator and forces
the network to recognize the input data and its variations correctly. Finally, in scheme four, a deep
attractor neural network-based structure is proposed to shape the structure’s hidden layer components
so that it can compensate for variabilities.

The experiments are implemented on a Persian database named Farsdat, and the results are reported
using phone error rate (PER) criteria. From every 25-millisecond speech frame, an acoustic feature
called LHCB is extracted and combined with delta and delta-delta features of that frame. Every frame's
features are concatenated with fourteen adjacent frames and are finally fed to our neural network-based
landmark extraction model. The best-trained model obtained the PER of 21.74% on test data. Using
scheme one to four, we achieved an absolute PER decrease by 0.39, 0.58, 0.43 and 1.30 percent,
respectively. Comparing our landmark-based system's performance with other Persian phone
recognition systems shows that this method could perform efficiently as a Persian phone recognition
system .

In our future works, we intend to compare our acoustic-based phone recognition system's performance
with conventional methods such as CTC in noisy conditions. Besides, it seems that acoustic landmarks
can be used to create an alignment of the input speech sequence and the output transcription. Therefore,
we will present a combination of CTC-based methods and acoustic landmarks to utilize acoustic
landmarks' complementary information. This information might boost the performance and speed of
CTC-based speech recognition methods, particularly in low resource languages.

Keywords: Phone Recognition, Acoustic Landmarks, Deep Learning, Robust Recognition, Nonlinear
Filtering.
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(Figure-2): An example of acoustic landmarks in a speech
signal segment [22].
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Algorithm-1: Decision making method of
each frame’s landmark type.

o f max(ON) = max(SN) & max(SN) > thrl
Then:  ‘s’: the frame is a state

e else if max(ON) = max{EN} & max(El) &
max(E2)>thr2
Then: ‘¢’: the frame is an event

o else: ‘n’: the frame is not a landmark
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(Figure-5): Output neurons representing
acoustic landmarks.
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(Figure-6): Neural network model for acoustic
landmark recognition.
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Algorithm-2: Acoustic landmarks’ information combination
method to transform a landmark
sequence to a phone sequence.

o if L(i-1)="s’ & (P(i)=P(i-1) or P(i-1)=""")

______ or
: i e if L(i+1)=s’ & P(i)=P(i+1)
E state pf or > P(i)
: i| e if L(i-1)="e’ & (P(i)=P2(i-1) or P2(i-1)="")
or

o if L(i+1)="e’ & P(i)=P1(i+1)

o if L(i-1)="s’ & (P1(i)=P(i-1) or P(i-1)=""")
or 10
o if L(i-1) = e’ & ( P1())=P2(i-1) or P2(i-1)=""")

o if L(i+1)=’s" & P2(i)=P(i+1) _
or H» P2(i)
e if L(itl)="e’ & P2(i)=PI1(i+1)
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(Figure-9): Scheme 2- Learning landmark labels and
landmark variability compensation in a unified model.
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(Figure-8): Scheme 1- Landmark variabilty compensation
method using a DAN structure.
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(Figure-9): Structure of the recurrent neural network with
the recurrent connection to the hidden layer [17].
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(Figure-10): Scheme 3- Using recurrent

connections in hidden layers to compensate input
variabilities.
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(Figure-13): LHCB extraction method [3].
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(Figure-12): Scheme 4- Shaping hidden layers
components to compensate variabilities.
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(Tabel-3): Phone error rate results of
landmark based system.
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