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Improvement of generative adversarial networks for
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2 Computer Science Department, University of Copenhagen, Copenhagen, Denmark.

Abstract:

This research is related to the development of technology in the field of automatic text to image
transformation; also known as image generation from text. In this regard, two main goals are pursued;
first, the produced image must look as real as possible; and second, the produced image should be a
meaningful description of the input text. In recent years, generative adversarial networks that are
capable of producing a wide range of content such as images, text and audio, have been emerged. The
problem of producing images from text is a complex task in the field of machine vision and natural
language processing. With the advancement of new technologies, automatic image production from text
has become especially important due to its application in various fields, such as automated content
production. The basic methods for producing images from text actually used a combination of search
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and supervised learning. These methods use the correlation between the image regions and the words in
the text that can be depicted. These selected words are then used to retrieve the images that are related
to them. The problem with this solution is that it cannot generate images with new content. For this
reason, in recent years, some studies have been introduced for text to image generation based on GANs
and deep convolutional neural networks. In 2016, Reed et al. represented a model for text-to-image
generation using GANSs for the first time. They were able to generate images of flowers and birds with a
resolution of 64 x 64. However, their proposed method usually lacked precise details of objects such as
bird eyes and they were not capable of producing higher resolution images, such as 128 x 128. Zheng et
al. proposed StackGAN model that divides the problem into two smaller subproblems. In the first step,
they generate a low-resolution image with the initial design and color of the objects based on the text. In
the second step, the output of the previous step and the text are given as input to the system to improve
the original image and produce a high-quality image. In 2019, Zhou and colleagues introduced the DM-
GAN network. Their proposed model relies on dynamic key-value memory and focuses on improving
the quality of the image produced in the first step. Primary image properties are used as the search key
in the memory module. In memory units at each step, the words associated with the generated image are
dynamically selected and written. The methods presented so far have used only one sentence to produce
the initial image and also to improve it in the next steps. While the datasets used in this field contains at
least five descriptions for each image. The proposed method is a Multi Sentences Hierarchical GAN
(MSH-GAN) for text to image generation. In this paper, we have looked at two key options: 1) produce a
higher quality image in the first step, and 2) use two additional descriptions to improve the original
image in the next steps. Our goal is to focus on using more information to produce higher resolution
images. The structure of the network is in such a way that in the first stage, one sentence is used to
generate an initial low-resolution image. Then in the next steps, the initial image improves based on the
next two sentences, and the model generates higher-resolution images. The structure of the existing
memory retrieves more important text information in each step to improve image quality based on the
attention mechanism. Implementing programs related to this field require massive processing resources.
Therefore, the proposed method was implemented and tested on a cluster with 25 GPUs using the
hardware platform of the University of Copenhagen. The experiments were performed on CUB-200 and
ids-ade datasets. The experimental results based on Inception score and R-precision evaluation metrics
show that the proposed model can produce higher quality images than the two basic models StackGAN

and AttGAN.
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3 Kullback-Leibler divergence

1 Conditional Augmentation (CA)
2 Robust
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1. It's a bedroom with jade green walls.

2. The bedroom suite is all light colored
wood. There is a bed, dresser, night stand
and an armoire.

3. Thebedis a Full bed with a wooden
headboard and footboard inset with
scrolled metal.

4. An off-white oriental carpet is in the
middle of the white floor.

The armoire is elevated on a platform.

5. It's a bedroom with jade green walls.

6. The bedroom suite is all light colored
wood. There is a bed, dresser, night stand
and an armoire.

7. The bed is a Full bed with a wooden
headboard and footboard inset with
scrolled metal.

8. An off-white oriental carpet is in the
middle of the white floor.

9. The armoire is elevated on a platform.

[6] ids-ade osloas gozo 31 glaiges ) — JSis
Figure-1: An example of ids-ade dataset.
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Table-1: The IS on the CUB-200 dataset.

Model IS (1)
GAN-INT-CLS [10] 2.88
StackGAN [17] 3.70
AttGAN [14] 4.36
DM-GAN [21] 4.69
MSH-GAN 4.80
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Table-2: The R-precision on the CUB-200 dataset.
Model R-Precision (1)
AttGAN 67.82
DM-GAN 72.31
MSH-GAN 79.27
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3 State-of-the-art

1 Batch size
2 Cosine similarity
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Ground truth

Examples of Descriptions Generated images

1. The bird has a white and gray speckled belly
and breast with a short orange bill.

2. A bird with a grey head and white throat, the
bill is short and pointed, with grey covering
the rest of the body.

3. Alarge bird with a grey coloring.

1. This bird has a red breast and a white belly
and has a red head.

2. Asmall predominantly red colored bird with a
small rounded beak, and a speckled white and
red belly

3. A small red bird with light brown sides and a
small brown beak.

1. A medium sized bird that has tones of grey
and a large sized bill

2. This small bird has a thick beak, with brown
feathers on it.

3. A bird that has a thick yellow beak, and a
thick gray neck.

MSH-GAN (g lgaiiny Joo 3l oo adgi o glai gu LG 31 (glaigus (Y — &)
Figure-2: Example results of generated images from proposed model MSH-GAN
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Table-3: Evaluation of MASH-GAN model on ids-ade

dataset.
Method IS (1) R'Pr(eTc)'s'O”
CS123 4.98 69.95
CS1RR 5.19 80.59
CSRRR 4.87 69.57
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Table-4: Evaluation of MASH-GAN model on ids-ade

dataset.
Model 1S (1) R-Precision (1)
C-R 4.61 69.73
C-1 4.35 65.3
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1.There are two wooden doors shown.

2.There is one picture of a woman on the
back wall.

3.There is a cocoa brown colored rug on the
floor of the image.

1. A picture contains the glass window with
wooden frame

2.Atable is there near the window

3. A plug point was there under the window

1. A bathroom with birght yellow walls

2.There is yellow towel sitting on the his and
hers sink

3. Using the mirror over the sink; you can see
a red towel next to the shower.

1. All around the room there are very dark
wooden cabinets

2. Above the kitchen sink there's a window
with white lacy scalloped curtains

3.Above the oven there's a white microwave
built in to the cabinets

3 0 sl ol (gilbsigns (¥ - J50)

ids-ade ols ac gosxo

Figure-3: Examples of generated images on ids-ade dataset

OF 2o Vol VP Jlu


http://dx.doi.org/10.61186/jsdp.19.4.33
https://jsdp.rcisp.ac.ir/article-1-1170-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.61186/jsdp.19.4.33]

O 590 Il )39:05 HI 398 3ulgi Sl p Moo L) SldaSIb Sgug

&

V. Cheung, A. Radford, and X. Chen, "Improved
techniques for training gans, " in Advances in
neural information processing systems (NIPS),
2016 .

[yl C. Szegedy, V. Vanhoucke, S. loffe, J.
Shlens, and Z. Wojna, "Rethinking the inception
architecture for computer vision, " in Proc. of the
IEEE conf. on computer vision and pattern
recognition, 2016 .

[Yv] C. Wah, S. Branson, P. Welinder, P.

Perona, and S. Belongie, The caltech-ucsd birds-
200-2011 dataset, 2011 .

['f]  T. Xu, P. Zhang, Q. Huang, H. Zhang, Z.
Gan, X. Huang, and X. He, "Attngan: Fine-grained
text to image generation with attentional generative
adversarial networks, " in Proc. of the IEEE conf.
on computer vision and pattern recognition, 2018 .
1ol X. Yan, J. Yang, K. Sohn, and H. Lee,
"Attribute2image: Conditional image generation
from visual attributes, " in European Conf. on
Computer Vision, 2016 .

[l G. Yin, B. Liu, L. Sheng, N. Yu, X. Wang,
and J. Shao, "Semantics disentangling for text-to-
image generation, " in Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[yv] H. Zhang, T. Xu, H. Li, S. Zhang, X.
Huang, X. Wang, and D. Metaxas, "Stackgan: Text
to photo-realistic image synthesis with stacked
generative adversarial networks, " in Proc.of the
IEEE int. conference on computer vision, 2017.

[YA] H. Zhang, T. Xu, H. Li, S. Zhang, X.
Wang, X. Huang, and D. N. Metaxas, "Stackgan++:
Realistic image synthesis with stacked generative
adversarial networks, " in IEEE transactions on
pattern analysis and machine intelligence, 2017.

[1al Z. Zhang, Y. Xie, and L. Yang, " Photo-
graphic  Text-to-lmage  Synthesis  with a
Hierarchically-nested Adversarial Network™ in
Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, 2018.

[v.] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H.

Hao, and B. Xu, "Attention-based bidirectional
long short-term memory networks for relation
classification, " in Proceedings of the Annual
Meeting of the Association for Computational
Linguistics, 2016 .

[vy] M. Zhu, P. Pan, W. Chen, and Y. Yang,

"dm-gan: Dynamic memory generative adversarial
net. for text-to-image synthesis, " in Proc. of the
IEEE Conf. on Computer Vision and Pattern
Recognition, 2019 .

[vv]  X.Zhu, A. B. Goldberg, M. Eldawy, C. R.

Dyer, and B. Strock, "A text-to-picture synthesis
system for augmenting communication, " in
proceeding of Association for the Advanced of
Artificial Intelligence (AAAI), 2007.

OF 2l Vo, VP4 Jlo

8-Refrence &1y = A

el S5, latie o dadle 5 sage demme lren] (2>
aloe M B, by slaaSid SeSa Sl gl S

OY-VF  Clrao O ojled VF oj50 daosls g e h3lo
AYAA
[ M. M. Haji-Esmaeili, and G. Montazer,

"Automatic Coloring of Grayscale Images Using
Generative Adversarial Networks, ", Journal of
Signal and Data Processing (JSDP), vol. 16 (1), pp.
57-74, 2019.

[¥] T. Baltrusaitis, C. Ahuja, and L. P.

Morency, "Multimodal machine learning: A survey
and taxonomy, " in IEEE Transactions on Pattern
Analysis, 2017 .

[v] A. Dash, J. C. B. Gamboa, S. Ahmed, M.

Liwicki, and M. Z. Afzal, "Tac-gan-text
conditioned  auxiliary  classifier  generative
adversarial ~ network, " arXiv  preprint
arXiv:1703.06412, 2017.

[f] I. Goodfellow, J. Pouget-Abadie, M.

Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, "Generative adversarial
nets, " in Advances in neural information
processing systems, 2014.

[&] C. Gulcehre, S. Chandar, K. Cho, and .
Bengio, "Dynamic neural turing machine with
continuous and discrete addressing schemes, "
Neural computation, vol. 30, no. 4, pp. 857-884,
2018.

(5] N. llinykh, S. ZarrieR, and D. Schlangen,
"Tell Me More: A Dataset of Visual Scene
Description Sequences, " in Proceedings of the 12th
International Conference on Natural Language
Generation, 2019.

[v] K. J. Joseph, A. Pal, S. Rajanala, and V.

N. Balasubramanian, "C4synth: Cross-caption
cycle-consistent text-to-image synthesis, " in IEEE
Winter Conference on Applications of Computer
Vision (WACV), 2019 .

[Al W. Li, P. Zhang, L. Zhang, Q. Huang, X.

He, S. Lyu, and J. Gao, "Object-driven text-to-
image synthesis via adversarial training, " in Proc.
of the IEEE Conf.e on Computer Vision and Pattern
Recognition, 2019 .

[a] A. Miller, A. Fisch, J. Dodge, A. H.

Karimi, A. Bordes, and J. Weston, "Key-value
memory networks for directly reading documents, "
in Proceeding of Empirical Methods in Natural
Language Processing (EMNLP), 2016 .

[V.] S. Reed, Z. Akata, X. Yan, L. Logeswaran,
B. Schiele, and H. Lee, "Generative adversarial text

to image synthesis, " arXiv  preprint
arXiv:1605.05396, 2016.
(1] T. Salimans, |. Goodfellow, W. Zaremba,


http://dx.doi.org/10.61186/jsdp.19.4.33
https://jsdp.rcisp.ac.ir/article-1-1170-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.61186/jsdp.19.4.33]

FoepelS (pwdige AL, )3 (5550

2SSl g (Sgmanber il S
oKl

olBadls 51 AYVAY o o 1) s>

S obaal 0,5 C8l s FamelS gwaige ALl o 5l
oSl el pole 0aSiils 45 (5:Sh VTN g0
Wls Hgam leage S egn plprear Sleils SheS
(b Ok Ol plinl adle 090 cieghy i)

Ll Bras 5550k 9 gl B3l
5l el @le lasl asblly glas
e.pejhan@stu.yazd.ac.ir

oaszils SLasls edlypuld oo
,‘ﬁﬁ‘ aS Wy oRuily jo FenslS cwaige

ﬁg; 21y 053 pwlid, 8 VYPA Jlo o

M

P Sl g eble (hea il S ignalS cwaige
SSS b)) Syl S oRisls 5TV L
LAYAS oo 5l (655 ghalo (6l 0,57 8L )0 (0l 5
@ ol plowsy p sollails ;o VAT (ragy

Sl FemelS owiige g pole ard,

pole? ;0 355 lpSs F 5l g e Jerdne Ghagh
30 Ouizrad 20,5 g VWAY ol ;0 € 5glS (g ks
Soegyn Olyea ) 093 Slllas cuop WTAD Lo
L35 QT HPE o 1Soley S tesh 5 Olaes
Jelos g 2k Jeld plil ragn slaejs
(b 0Ly Gl (Eran i sy, e )sN]
el 138l 5 Conal 5 ez (sbools
el ke Sl aallly glas

m.ghasemzadeh@ yazd.ac.ir

OF 2o Vol VP Jlu


mailto:e.pejhan@stu.yazd.ac.ir
http://dx.doi.org/10.61186/jsdp.19.4.33
https://jsdp.rcisp.ac.ir/article-1-1170-fa.html
http://www.tcpdf.org

