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Abstract

Optimization is a very important process in engineering. Engineers can create better production only if
they make use of optimization tools in reduction of its costs including consumption time. Many of the
engineering real-word problems are of course non-solvable mathematically (by mathematical
programming solvers). Therefore, meta-heuristic optimization algorithms are needed to solve these
problems. Based on this assumption, many new meta-heuristic optimization algorithms have been
proposed inspired by natural phenomena, such as IWO [58], BBO [59], WWO [61], and so on. Inspired
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by domino toppling theory, we proposed an optimization algorithm. Using domino pieces, we can create
countless complex structures. To simulate the domino movement in the search space of a problem, we
consider the particles in the search space as the domino pieces and, by creating an optimal path, we will
try to direct the dominoes to the optimal path. The optimal paths will be updated in each iteration. After
initializing the dominoes randomly at the beginning of each evaluation, the picking piece or the first
moving piece will be identified and then the particles will be selected by the optimal path. Applying a
motion equation to each domino will move the dominoes forward in that direction. At first, a predefined
dominoes will be randomly distributed in the problem space. Choosing the optimal path will accelerate
the convergence of the domino particles towards the target. After choosing the path in current iteration,
we now have to do the domino movement. The particles will move to a new location by applying the new
location equation. By applying this equation, each domino piece will sit on the track ahead of itself. The
front piece will also move to a new location by applying an equation separate from the rest. After
moving the dominoes to the new location, the worst iteration of the previous iteration will be removed
from the problem space. In the new iteration, the optimal domino path, the new locations of domino
pieces and the global optimum will be updated. At the end of the algorithm, the global optimum will be
determined as the optimal solution. This method is implemented in a simulator environment.
To evaluate the performance of the Domino Optimization algorithm, we use a complete benchmark
including 30 objective functions called CEC 2014 [67] that are single-objective numerical functions. In
all cases, we set the population size to 50, the dimension size to 30, and the number of fitness function
evaluation to 150,000. We compare the proposed Domino Optimization algorithm (DO) with the
algorithms LOA [57], ICS [62], NPSO [63], MOHS [64], BCSO [65] and FFFA [66]. The results obtained
from the 3 unimodal functions show that the proposed method is able to achieve a better solution than
any of the state of the art algorithms at the equal resources. Results in the multimodal functions show
that the proposed method has the best performance in finding the optimal solution in all of the available
13 functions in this section. In all of 6 functions in the hybrid section, the quality of the proposed method
is better than all of the state of the art algorithms at the equal resources. The standard deviation values
of the proposed method, which are often small numbers, indicate algorithm convergence around the
optimal solution. Also among the available methods, two algorithms, named NPSO and LOA, have good
results after the proposed method. In the convergence analysis of dominoes, the diversity of objective
functions in 100 distinct iterations shows a big value at the beginning of the algorithm, and a low value
at the end of the algorithm.
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1D Function f
F1 Shifted Sphere Function 100
F2 Shifted Schwefel’s Problem 200
F3 Rotated discus function 300
Fa Shifted and rotat(_ed Rosenbrock 400
function
Shifted and rotated Ackley's
F5 function 500
6 Shifted and rotatgd Weierstrass 600
function
F7 Shifted and rotat_ed Griewank's 700
function
F8 Shifted Rastrigin function 800
Shifted and rotated Rastrigin's
F9 function 900
F10 Shifted Schwefel function 1000
F11 Shifted and rotat_ed Schwefel's 1100
function
Shifted and rotated Katsuura
F12 function 1200
F13 Shifted and rotaFed HappyCat 1300
function
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F21 Hybrid function5 (f 14, f 12, f 2100 F14 Shifted and rot_ated HGBat 1400
4,f9,f1) function
F22 Hybrid function6 (f 10, f 11, f 2200 Shifted and rotated Expanded
13,f9,f5) F15 Griewank's Rosenbrock's 1500
F23 Composition functionl (f 4, f 1, 2300 _ function
f2,f3,f1) Shifted and rotated Expanded
— - F16 . : 1600
F24 Composition function2 (f 10, f 2400 Scaffer's F6 function
9,f14) F17 Hybrid function1 (f9,f8,f1) | 1700
F25 | Composition function3 (F11,1 | ) F18 | Hybrid function2 (f2,f12,¥8) | 1800
9.11) Hybrid function3 (F 7, 7 6, f 4, f
Search Range: [-100,100]D F19 14) 1900
Hybrid function4 (f 12, f 3, f
F20 13, 18) 2000

Y492 9 Y10 sl Jlu 50 ouds &1yl (slaps 5951 9 (goleacion (599 sl CEC 2014 o algi ac goxo (59 o Lo (Y- J9u)
(Table-2): Results on the CEC 2014 Function Set for the Proposed Method and Algorithms presented in 2015 and 2016

CCABC EPSDE MRPSO LOA ICS NPSO MOHS BCSO FFFA DO

Best Cost | 4.35E+05 | 1.88E+05 | 3.68E+05 | 1.45E+05 | 2.06E+05 | 1.68E+05 | 4.01E+05 | 6.30E+05 4.10E+05 | 1.23E+05

o (Fogat S uwding Jalwe Ja sl @i 98l S &SIl

F1 STD | 3.44E+05 1.94E+05 | 2.74E+05 1.32E+05 | 2.12E+05 1.74E+05 | 3.21E+05 | 4.44E+05 2.19E+05 | 1.12E+05
2 Best Cost | 7.02E+02 | 6.57E+02 | 7.37E+02 | 6.83E+02 | 6.98E+02 | 5.37E+02 | 5.69E+02 | 7.12E+02 6.23E+02 | 4.13E+02

STD | 5.40E+02 | 3.50E+02 | 4.54E+02 | 4.96E+02 | 4.50E+02 | 3.54E+02 | 3.77E+02 | 4.46E+02 4.70E+02 | 3.36E+02
£3 Best Cost | 6.04E+02 | 4.64E+02 | 5.40E+02 | 5.29E+02 | 5.34E+02 | 4.40E+02 | 5.79E+02 | 6.84E+02 5.77E+02 | 3.66E+02

STD 3.97E+02 2.77E+02 3.44E+02 3.20E+02 3.48E+02 2.44E+02 | 4.78E+02 6.77E+02 6.78E+02 2.49E+02

F4 Best Cost | 4.89E+02 | 4.14E+02 5.23E+02 | 4.26E+02 | 4.30E+02 | 4.23E+02 | 4.44E+02 | 4.46E+02 4.21E+02 3.68E+02

STD | 4.99E+01 | 4.89E+01 | 5.78E+01 | 4.81E+01 | 4.85E+01 | 4.78E+01 | 4.93E+01 | 4.95E+01 4.74E+01 | 4.55E+01

F5 Best Cost | 5.79E+02 5.23E+02 5.00E+02 5.03E+02 5.07E+02 5.00E+02 | 5.23E+02 5.19E+02 4.98E+02 | 4.73E+02

STD | 3.92E+00 | 3.68E+00 | 4.70E+00 | 3.73E+00 | 3.77E+00 | 3.70E+00 | 3.86E+00 | 3.82E+00 3.68E+00 | 3.47E+00

F6 Best Cost | 6.45E+02 | 5.99E+02 | 7.98E+02 | 6.01E+02 | 6.04E+02 | 5.98E+02 | 6.18E+02 | 6.14E+02 5.90E+02 | 5.46E+02

944093 (5985

STD | 2.78E+00 | 2.35E+00 | 3.15E+00 | 2.17E+00 | 2.23E+00 | 2.15E+00 | 2.47E+00 | 2.43E+00 2.11E+00 | 1.89E+00

F7 Best Cost 7.09E+02 6.99E+02 7.07E+02 7.00E+02 7.06E+02 6.97E+02 | 7.20E+02 7.21E+02 6.77E+02 6.23E+02

STD 8.98E-04 8.74E-04 8.92E-04 8.55E-04 8.59E-04 8.52E-04 8.73E-04 8.71E-04 8.40E-04 7.67E-04

F8 Best Cost | 8.58E+02 | 7.99E+02 | 8.08E+02 | 8.02E+02 | 8.06E+02 | 7.98E+02 | 8.20E+02 | 8.16E+02 7.99E+02 | 7.63E+02

STD | 3.89E+00 | 3.86E+00 | 3.98E+00 | 3.81E+00 | 3.87E+00 | 3.78E+00 | 3.91E+00 | 3.87E+00 3.30E+00 | 2.77E+00

F9 Best Cost | 9.68E+02 | 9.56E+02 | 9.78E+02 | 9.03E+02 | 9.11E+02 | 9.00E+02 | 9.25E+02 | 9.21E+02 9.00E+02 | 8.76E+02

STD | 3.99E+00 | 3.87E+00 | 3.85E+00 | 3.78E+00 | 3.81E+00 | 3.75E+00 | 3.95E+00 | 3.91E+00 3.14E+00 | 2.91E+00

F10 Best Cost 1.56E+03 1.69E+03 1.95E+03 1.00E+03 1.07E+03 1.55E+03 | 1.21E+03 1.23E+03 1.01E+03 | 0.71E+03

STD 9.84E-02 9.46E-02 9.89E-02 9.00E-02 9.04E-02 9.46E-02 9.18E-02 9.20E-02 8.55E-02 8.47E-02

F11 Best Cost | 1.69E+03 | 1.28E+03 | 1.78E+03 | 1.11E+03 | 1.16E+03 | 1.08E+03 | 1.30E+03 | 1.30E+03 1.10E+03 | 1.02E+03

STD | 4.04E+00 | 3.86E+00 | 3.97E+00 | 3.84E+00 | 3.91E+00 | 3.81E+00 | 4.12E+00 | 4.14E+00 3.10E+02 | 2.65E+00

F12 Best Cost 1.48E+03 1.37E+03 1.67E+03 1.20E+03 1.27E+03 1.17E+03 1.41E+03 1.46E+03 1.44E+03 1.08E+03

STD 2.57E-02 2.67E-02 2.89E-02 2.30E-02 2.36E-02 2.27E-02 2.40E-02 2.48E-02 2.86E-02 2.28E-02

F13 Best Cost 1.96E+03 1.77E+03 1.77E+03 1.30E+03 1.36E+03 1.27E+03 | 1.43E+03 1.47E+03 1.67E+03 | 1.06E+03

STD 1.22E+02 0.00E+00 0.00E+00 | 0.00E+00 1.02E+02 0.00E+00 | 2.97E+02 3.22E+02 1.12E+02 | 0.00E+00

F14 Best Cost | 1.89E+03 | 1.77E+03 | 1.67E+03 | 1.40E+03 | 1.47E+03 | 1.37E+03 | 1.61E+03 | 1.69E+03 1.47E+03 | 1.11E+03

STD 1.08E+02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 6.08E+02 3.74E+02 | 0.00E+00

F15 Best Cost 2.02E+03 1.67E+03 1.87E+03 1.50E+03 1.57E+03 1.47E+03 | 2.11E+03 2.22E+03 1.86E+03 1.16E+03

STD | 3.87E+00 | 3.78E+00 | 3.68E+00 | 3.51E+00 | 3.56E+00 | 3.48E+00 | 3.69E+00 | 3.60E+00 3.50E+02 | 3.33E+00

F16 Best Cost | 1.98E+03 | 1.77E+03 | 1.97E+03 | 1.60E+03 | 1.67E+03 | 1.57E+03 | 1.76E+03 | 1.92E+03 1.71E+03 | 1.22E+03

STD 1.97E+02 1.74E+00 1.79E+00 1.79E+00 1.83E+00 1.70E+00 1.88E+00 1.84E+02 1.89E+02 1.48E+00

F17 Best Cost | 2.84E+03 | 1.56E+03 | 1.83E+03 | 1.73E+03 | 2.12E+03 | 1.53E+03 | 2.01E+03 | 3.07E+03 | 3.064E+03 | 1.06E+03

STD | 4.05E+01 | 3.06E+01 | 3.69E+01 | 3.10E+01 | 4.02E+01 | 3.66E+01 | 3.44E+01 | 4.45E+01 4.08E+01 | 2.56E+01

F18 Best Cost | 3.01E+03 1.84E+03 1.98E+03 1.82E+03 | 5.07E+03 1.75E+03 | 2.71E+03 | 3.11E+03 3.49E+03 | 1.16E+03

STD | 3.41E+01 | 3.87E+01 | 3.94E+01 | 1.63E+01 | 3.77E+01 | 3.73E+01 | 3.69E+01 | 3.21E+01 3.70E+01 | 1.55E+01

F19 Best Cost | 6.44E+03 | 2.42E+03 | 2.68E+03 | 1.90E+03 | 6.04E+03 | 2.12E+03 | 2.13E+03 | 6.14E+03 6.90E+03 | 1.74E+03

STD | 2.03E+00 | 3.69E+00 | 3.89E+00 | 7.12E+00 | 2.23E+00 | 3.19E+00 | 5.45E+00 | 2.43E+00 2.11E+00 | 3.46E+00

F20 Best Cost | 4.41E+03 | 2.35E+03 | 2.87E+03 | 2.00E+03 | 2.06E+03 | 2.11E+03 | 2.23E+03 | 4.21E+03 4.00E+03 | 1.32E+03

STD 4.99E-04 4.36E-01 4.65E-01 4.62E-01 8.59E-04 4.00E-01 4.06E-01 3.99E-04 3.10E-04 2.32E-01

F21 Best Cost | 2.25E+03 | 1.97E+03 | 1.97E+03 | 2.10E+03 | 2.14E+03 | 1.90E+03 | 2.74E+03 | 3.25E+03 3.88E+03 | 1.38E+03

STD | 3.97E+00 | 2.85E+00 | 2.87E+00 | 2.06E+00 | 3.87E+00 | 2.77E+00 | 2.33E+00 | 3.27E+00 3.19E+00 | 1.44E+00

F22 Best Cost | 2.63E+03 | 2.54E+03 | 2.94E+03 | 2.21E+03 | 2.22E+03 | 2.04E+03 | 2.90E+03 | 2.73E+03 2.96E+03 | 1.98E+03

STD | 4.75E+00 4.77E-01 4.89E-01 4.86E-01 | 3.81E+00 4.44E-01 4.06E-01 | 3.00E+00 3.05E+00 3.55E-01

F23 Best Cost | 2.78E+03 | 2.91E+03 | 2.55E+03 | 2.55E+03 | 2.40E+03 | 2.31E+03 | 2.39E+03 | 2.64E+03 2.61E+03 | 2.17E+03

STD | 5.88E+01 | 6.23E+01 | 6.61E+01 | 8.93E+01 | 5.66E+01 | 6.21E+01 | 3.45E+01 | 2.12E+01 8.44E+01 | 3.53E+01

F24 Best Cost | 2.06E+03 | 1.99E+03 | 2.99E+03 | 2.62E+03 | 2.30E+03 | 1.98E+03 | 2.46E+03 | 2.66E+03 2.68E+03 | 1.84E+03

STD | 2.47E+00 | 3.74E+01 | 3.98E+01 | 2.33E+01 1.06E-02 | 3.64E+01 | 6.98E+00 | 5.47E+00 2.97E+01 | 2.15E+01

F25 Best Cost | 2.77E+03 | 2.39E+03 | 2.88E+03 | 2.56E+03 | 2.49E+03 | 2.38E+03 | 2.59E+03 | 2.68E+03 2.62E+03 | 2.12E+03

STD | 4.34E+00 | 6.99E+01 | 6.79E+01 | 6.93E+01 | 4.34E+00 | 6.94E+01 | 2.64E+00 | 4.68E+00 6.33E+01 | 4.03E+01

Friedman Test | [

Test Value | 6.03 6.41 4.66 7.118 5026 | 3110 [ 7891 | 6122 4.512 2.621
P-Value 6.562-08
Statistic 37.751
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(Figure-6): Left-to-right three-dimensional graph of the target function, search space, path of one of the dominoes to 100m
iteration, best cost graph to 100m iteration, mean of all domino particles for the proposed method
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(Table-3): Scenario table for the proposed method in
function F1 for different dimensions
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Domino 1 30
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Domino 4 100
Domino 5 20
Domino 6 25
Domino 7 50
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Table-4): Runtime results and time complexity
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(Figure-11): Graph of best cost, average cost, standard deviation and runtime of the algorithms in the proposed method for

functions F7 to F14 Average best cost algorithms in 5 dimensions
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