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Abstract

The rumor is a collective attempt to interpret a vague but attractive situation by using the power of
words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research
has focused more on the contextual information to reply tweets and less on the content features of the
original rumor to address the rumor detection problem. Most of the studies have been in the English
language, but more limited work has been done in the Persian language to detect rumors. This study
analyzed the content of the original rumor and introduced informative content features to early identify
Persian rumors (i.e., when it is published on news media but has not yet spread on social media) on
Twitter and Telegram. Therefore, the proposed model is based on physical and non-physical content
features in three categories including, lexical, syntactic, and pragmatic. These features are a
combination of the common content features along with the proposed new content-based features. Since
no social context information is available at the time of posting rumors, the proposed model is
independent of propagation-based features and relies on the content-based information of the original
rumor. Although in the proposed model, much information (including user information, the user's

* Corresponding author Ll Hloouge 34-1»4,95*

Y 2l ) )bl VP Lo g 1aslllane £93® VFeelo¥ [0} 1Ll g 5O VWAR/SV/Y 1y iy g )50 VWAASYITY tallie Jluyl & ,l5®


http://dx.doi.org/10.52547/jsdp.18.1.50
https://jsdp.rcisp.ac.ir/article-1-1033-en.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-01-29 ]

[ DOI: 10.52547/jsdp.18.1.50 ]

reaction to the rumor, and propagation structures) are ignored, but helpful content information can be
obtained for classification by content analysis of the original rumor.

Several experiments have been performed on the various combinations of feature sets (i.e., common
and proposed content features) to explore the capability of features in distinguishing rumors and non-
rumors separately and jointly. To this end, three machine learning algorithms including, Random
Forest (RF), AdaBoost, and Support Vector Machine (SVM) have been used as strong classifications to
evaluate the accuracy of the proposed model. To achieve the best performance of classification
algorithms on the training dataset, it is necessary to use feature selection techniques. In this study, the
Sequential Forward Floating Search (SFFS) approach has been used to select valuable features. Also,
the statistical results of the t-test on the P-value (<=0.05) demonstrate that most of the new features
proposed in this study reveal statistically significant differences between rumor and non-rumor
documents. The experimental results are shown the performance of new proposed features to improve
the accuracy of the rumor detection. The F-measure of the proposed model to detect Persian rumors on
the Twitter dataset was 0.848, on the Kermanshah earthquake dataset was 0.952 and on the Telegram
dataset was 0.867, which indicated the ability of the proposed method to identify rumors only by
focusing on the content features of the original rumor text. The results of evaluating the proposed model
on Twitter rumors show that, despite the short length of Twitter tweets and the extraction of limited
content information from tweets, the proposed model can detect Twitter rumors with acceptable
accuracy. Hence, the ability of content features to distinguish rumors from non-rumors is proven.

Keywords: Persian rumors detection, Content analysis, Physical and non-physical content features, Text
processing.
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(Table-1): The list of features introduced by supervised learning- based previose works for rumor detection
in compration with the proposed method.
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(Figure-1): The general structure of the proposed model to
identify rumors.
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(Table-2): The list of physical features for rumor
detection. The proposed new features are marked
with the "™*"* mark.
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(Figure-2): Rumors and content features related to it
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(Table-3): The list of non-physical contextual features for

rumor detection. The proposed new
features are marked with the "**** mark.
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(Figure-3): The vector representation of training texts as
text-feature matrix.
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(Table-4): Evaluation of the proposed model on dataset of
Twitter using three classifier RF, AdaBoost and SVM.
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(Table-5): Evaluation of the proposed model on dataset of
Telegram using three classifier RF, AdaBoost and SVM.
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(Table-6): The average frequency of 50 features, along with the p-value of a student t-test for comparing frequencies

in Rumor versus Non-Rumor groups in Telegram posts.
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(Table-7): Different impact of previuse and proposed
features on the classification accuracy of Telegram posts in
two rumor and non-rumor classes by RF classifier in three

separate experimrnts.
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(Figure-4): Recognition rate of SFFS method based on

average F-measure using contextual-based features to detect
Persian rumors published in Twitter and Telegram.
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(Figure-6): Learning curves and classification accuracy
based on % training data and three different experiments.
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