Article number: 3

Type of Study: Research |
Subject:
Paper

Received: 2019/12/2 | Accepted: 2020/08/18 | Published: 2022/09/30 | ePublished: 2022/09/30

Received: 2019/12/2 | Accepted: 2020/08/18 | Published: 2022/09/30 | ePublished: 2022/09/30

1. [1] A. Braun, and et al, "Landslide Susceptibility Mapping in Tegucigalpa, Honduras, Using Data Mining Methods", in IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018-Volume 1. 2019. Springer. [DOI:10.1007/978-3-319-93124-1_25]

2. [2] S.Fotouhi, S. Asadi, and M.W. Kattan, "A comprehensive data level analysis for cancer diagnosis on imbalanced data", Journal of biomedical informatics, 2019. [DOI:10.1016/j.jbi.2018.12.003] [PMID]

3. [3] N. Junsomboon, and T. Phienthrakul, "Combining over-sampling and under-sampling techniques for imbalance dataset", in Proceedings of the 9th International Conference on Machine Learning and Computing. 2017. ACM. [DOI:10.1145/3055635.3056643]

4. [4] S.A. Golder, B.A. Huberman, "Usage patterns of collaborative tagging systems", Journal of information science, vol. 32(2), pp. 198-208. 2006. [DOI:10.1177/0165551506062337]

5. [5] Y. Sun, and et al., "Cost-sensitive boosting for classification of imbalanced data", Pattern Recognition, vol. 40(12), pp. 3358-3378, 2007. [DOI:10.1016/j.patcog.2007.04.009]

6. [6] Z.-H. Zhou, X.-Y. Liu, "Training cost-sensitive neural networks with methods addressing the class imbalance problem", IEEE Transactions on Knowledge & Data Engineering, pp. 63-77. 2006. [DOI:10.1109/TKDE.2006.17]

7. [7] N.V. Chawla, and et al., "SMOTE: synthetic minority over-sampling technique", Journal of artificial intelligence research, vol. 16, pp. 321-357. 2002. [DOI:10.1613/jair.953]

8. [8] E. Fernandes, and et al., "Ensemble of Classifiers based on MultiObjective Genetic Sampling for Imbalanced Data", IEEE Transactions on Knowledge and Data Engineering, 2019. [DOI:10.1109/TKDE.2019.2898861]

9. [9] A. Roy, et al. "A study on combining dynamic selection and data preprocessing for imbalance learning", Neurocomputing, pp. 179-192, 2002. [DOI:10.1016/j.neucom.2018.01.060]

10. [10] W. Xie, G.Liang, Z. Dong, B. Tan, and B. Zhang, "Mathematical Problems in Engineering; An Improved Oversampling Algorithm Based on the Samples", Selection Strategy for Classifying Imbalanced Data. 2019. [DOI:10.1155/2019/3526539]

11. [11] V.C. Silvia Cateni, M. Vannucci, "A method for resampling imbalanced datasets in binary classification tasks for real-world problems", Neurocomputing,Elsevier.

12. [12] T. M. Khoshgoftaar, A.F., D. J. Dittman and A. Napolitano, "Ensemble vs. Data Sampling: Which Option Is Best Suited to Improve Classification Performance of Imbalanced Bioinformatics Data?" 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, , 2015, pp. 705-712. [DOI:10.1109/ICTAI.2015.106]

13. [13] G.E. Batista, R.C. Prati, and M.C. Monard, "A study of the behavior of several methods for balancing machine learning training data", ACM SIGKDD explorations newsletter, vol. 6(1), pp. 20-29, 2004. [DOI:10.1145/1007730.1007735]

14. [14] P. Hart, "The condensed nearest neighbor rule (Corresp.)", IEEE transactions on information theory, vol. 14(3), pp. 515-516, 1968. [DOI:10.1109/TIT.1968.1054155]

15. [15] I.Tomek, "Two modifications of CNN", IEEE Trans. Systems, Man and Cybernetics, vol.6, pp. 769-772, 1976. [DOI:10.1109/TSMC.1976.4309452]

16. [16] J. Laurikkala, "Improving identification of difficult small classes by balancing class distribution", in Conference on Artificial Intelligence in Medicine in Europe, Springer. 2001. [DOI:10.1007/3-540-48229-6_9]

17. [17] S.-J.Yen, and Y.-S. Lee, "Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset", in Intelligent Control and Automation, Springer. pp. 731-740, 2006. [DOI:10.1007/978-3-540-37256-1_89]

18. [18] M. Kubat, and S. Matwin, "Addressing the curse of imbalanced training sets: one-sided selection", in Icml. 1997. Nashville, USA.

19. [19] S. Gazzah , A.H., N. Essoukri Ben Amara, "A hybrid sampling method for imbalanced data", pp. 1-6, 2015. [DOI:10.1109/SSD.2015.7348093]

20. [20] H. Han, W.-Y. Wang, and B.-H. Mao, "Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning", in International conference on intelligent computing, 2005, Springer. [DOI:10.1007/11538059_91]

21. [21] H. He, et al, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning", in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008.

22. [22] G. Cohen, et al., "Learning from imbalanced data in surveillance of nosocomial infection", Artificial intelligence in medicine, vol. 37(1), pp. 7-18, 2006. [DOI:10.1016/j.artmed.2005.03.002] [PMID]

23. [23] S. Tang, and S.-p. Chen, "The generation mechanism of synthetic minority class examples", in 2008 International Conference on Information Technology and Applications in Biomedicine, IEEE, 2008,. [DOI:10.1109/ITAB.2008.4570642] [PMID]

24. [24] J. Stefanowski, and S. Wilk, "Selective pre-processing of imbalanced data for improving classification performance", in International Conference on Data Warehousing and Knowledge Discovery, Springer, 2008.

25. [25] D.M.B. Tarigan, and D.P. Rini, "Particle Swarm Optimization-Based on Decision Tree of C4. 5 Algorithm for Upper Respiratory Tract Infections (URTI) Prediction", in Journal of Physics: Conference Series, IOP Publishing, 2019. [DOI:10.1088/1742-6596/1196/1/012077]

26. [26] D. Devi, and B. Purkayastha, "Redundancy-driven modified Tomek-link based undersampling: a solution to class imbalance", Pattern Recognition Letters, vol.93, pp. 3-12, 2017. [DOI:10.1016/j.patrec.2016.10.006]

27. [27] K. Javed, R. Gouriveau, and N. Zerhouni, "A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering", IEEE transactions on cybernetics, vol.45(12), pp. 2626-2639, 2015. [DOI:10.1109/TCYB.2014.2378056] [PMID]

28. [28] X.L. Xie, and G. Beni, "A validity measure for fuzzy clustering", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.(8), pp. 841-847. 1991 [DOI:10.1109/34.85677]

29. [29] K.Bataineh, M. Naji, and M. Saqer, "A comparison study between various fuzzy clustering algorithms", Editorial Board, vol. 5, pp. 335, 2011.

30. [30] Y. Ding, and X. Fu, "Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm", Neurocomputing, vol.188, pp. 233-238, 2016. [DOI:10.1016/j.neucom.2015.01.106]

31. [31] R.R.Yager, and D.P. Filev, "Generation of fuzzy rules by mountain clustering", Journal of Intelligent & Fuzzy Systems, vol. 2(3), pp. 209-219. 1994. [DOI:10.3233/IFS-1994-2301]

32. [32] S.L. Chiu, "Fuzzy model identification based on cluster estimation", Journal of Intelligent & Fuzzy Systems,vol. 2(3), pp. 267-278. 1994. [DOI:10.3233/IFS-1994-2306]

33. [33] D. W.Kim, et al., "A kernel-based subtractive clustering method", Pattern Recognition Letters, vol. 26(7), pp. 879-891, 2005. [DOI:10.1016/j.patrec.2004.10.001]

34. [34] M. Y Chen, "A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering", Information Sciences, vol.220, pp. 180-195. 2013. [DOI:10.1016/j.ins.2011.09.013]

35. [35] S. Zeng, S. M. Chen,. M. O.Teng, "Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm", Information Sciences, vol.484, pp.350-366, 2019. [DOI:10.1016/j.ins.2019.01.071]

36. [36] I. Beg, and S. Ashraf, "Similarity measures for fuzzy sets", Appl. and Comput. Math, vol.8(2), pp. 192-202, 2009.

37. [37] L.T. Kóczy, and D. Tikk, "Fuzzy rendszerek", TypoTEX, Budapest, 2000.

38. [38] J. Williams, and N. Steele, "Difference, distance and similarity as a basis for fuzzy decision support based on prototypical decision classes", Fuzzy sets and systems, vol.131(1), pp. 35-46. 2002. [DOI:10.1016/S0165-0114(01)00253-6]

39. [39] S. Santini, and R. Jain, "Similarity is a geometer", Multimedia Tools and Applications, vol. 5(3), pp. 277-306, 1997. [DOI:10.1023/A:1009651725256]

40. [40] R. Zwick, E. Carlstein, and D.V. Budescu, "Measures of similarity among fuzzy concepts: A comparative analysis", International Journal of Approximate Reasoning, vol. 1(2), pp. 221-242,1987. [DOI:10.1016/0888-613X(87)90015-6]

41. [41] S. García, et al., "A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization", Journal of Heuristics, vol.15(6), pp. 617-644, 2009. [DOI:10.1007/s10732-008-9080-4]

42. [42] O.T. Yıldız, Ö. Aslan, and E. Alpaydın, "Multivariate statistical tests for comparing classification algorithms," in Learning and Intelligent Optimization, Springer, pp. 1-15, 2011. [DOI:10.1007/978-3-642-25566-3_1]

43. [43] D.J. Sheskin, Handbook of parametric and nonparametric statistical procedures. 2003: Chapman and Hall/CRC. [DOI:10.1201/9781420036268] [PMID]

44. [44] S.García, and et al., "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power", Information Sciences, vol.180(10), pp. 2044-2064, 2010. [DOI:10.1016/j.ins.2009.12.010]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |