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Improving Imbalanced Data Classification Accuracy by
using Fuzzy Similarity Measure and
Subtractive Clustering
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2Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

One of the biggest challenges in this field is classification problems which refers to the number of
different samples in each class. If a data set includes two classes, imbalance distribution occurs when one
class has a large number of samples while the other is represented by a small humber of samples. In
general, the methods of solving these problems are divided into two categories: under-sampling and
over-sampling. In this research, it is focused on under-sampling and the advantages of this method will
be analyzed by considering the efficiency of classifying imbalanced data and it’s supposed to provide a
method for sampling a majority data class by using subtractive clustering and fuzzy similarity measure.
For this purpose, at first the subtractive clustering is conducted and the majority data class is clustered.
Then, using fuzzy similarity measure, samples of each cluster will be ranked and appropriate samples
are selected based on these rankings. The selected samples with the minority class create the final
dataset. In this research, MATLAB software is used for implementation, the results are evaluated by
using AUC criterion and analyzing the results has been performed by standard statistical tools. The
experimental results show that the proposed method is superior to other methods of under-sampling.
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) Loty ;55!

\VAS RUS

v CNN

\rid TL

#Iv SBC

Yy 0SS

Y0 NCL

Yy Proposed Method (hybrid of subtractive clustering and
Kozcy fuzzy measures)

ods ools i (F) Jgam o post hoc :yge3! Jlecl |
S pbbacsd sl b g ple Glaa, ol
2 byd cpl 9 [44] 0sS e 5, p-value< 0.05 ,lode
Olnle 0098 00 3y yho ans 8 g Cul S35 (F) Jour
St 3 8es oy, nlo a4 o oolpidan )

»)5..»‘59 6:1)15 0% g.A.ClJ 9 0)‘»)

g5 5l eoliiwl b cglas 099 5l ylebsl 51 o

aeteiS B 0uiS oo ooliswl POSt hoe yse)l 5l oy )8
O35l 3 Uhgy onre) (IS by LT a5 semo
5 0aiiS S ph S slahs, bsolel gl ((ems 8

ool y eads solatul sla Post hoc ., L oyls anslis
Jol> s asl o [44] ;i g olo slagge;] dlis

&3 calcd sbd Lo post hoc dus o :(F- J9u)

(Table-4): Post hoc comparison of fuzzy similarity measures

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.52547/jsdp.19.2.27 ]

and b e oo P z w951
Reject c[e s AOVY ofe s AYYY ZINOYY Y SBC
Reject <[+ V2A0Y ol A AINZ AV CNN
Reject [+ YYPVY ERVZ44% <[+ $20A4Y V/AAA9A4 TL
Reject <[+ YOYY) RN <[+ YOFAQ AIARA A [ORN]
Reject <[+ FIAYY YO ceBeXY VIAYYYSA NCL
Reject RN LRI «[+3ALOYY \IPOY - 77 RUS

SS9y » oddileans mls sl oul 00y S5 4
Sote 50 a5 aad e olis ge;l sleslsacgaze
T Gy Gl w990 resldasgacme
6LmQ5A}T P8 Judzo jelaiedy .l ails (g g
o S Cwas a4 ailad as S IS < bl
Shse (65 oaio il il canlive g L5)l,c—| 6“%:9‘}]
Cond 2alS gaisalies ol eaay Koczy (551 cwlis
sleosls  (guos, o cadazlls slohg, ple @

7- References &=l =Y
[1] A. Braun, and et al, "Landslide Susceptibility
Mapping in Tegucigalpa, Honduras, Using Data

OF 2be ¥ 5Ll 1P+ Jle

& 35 A -7
29990 Oilgel sosloacgorms e g cpl o
o ST, 5l oS aiges Glp s by s oo
ol slo s 5 Lwly cpl 55 (izren 5 0ud &l
330 Ojlgal slaosls ganes; o (saal,5 i Sl (55l
sladiges ol gy cul jo a8 3 (o) 9 Jelos
wolawi 4 oalS ganadys 3l colasl L oy ST
Godd, 5l oolatwl b s g Wlood el dlig>
3l g oad ciye ladiges (531 Calid slajlne abiwse
Sl diges golaxs ol B3lail 4 azgi b adgs
3 29990 goslddcseme 1wy ol jo lead
Jlesl 51 s g colatwl Keel li8le 5 5lgel
goe3, plml sl CA5 ganos; w2 o8l 5510 5 i


http://dx.doi.org/10.52547/jsdp.19.2.27
https://jsdp.rcisp.ac.ir/article-1-1010-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.52547/jsdp.19.2.27 ]

Artificial Intelligence (ICTAI), Vietri sul
Mare, , 2015, pp. 705-712.

[13] G.E. Batista, R.C. Prati, and M.C. Monard, "A
study of the behavior of several methods for
balancing machine learning training data",
ACM SIGKDD explorations newsletter, vol.
6(1), pp. 20-29, 2004.

[14] P. Hart, "The condensed nearest neighbor rule
(Corresp.)", IEEE transactions on information
theory, vol. 14(3), pp. 515-516, 1968.

[15] I.Tomek, "Two modifications of CNN", IEEE
Trans. Systems, Man and Cybernetics, vol.,
pp. 769-772, 1976.

[16] J. Laurikkala, "Improving identification of
difficult small classes by balancing class
distribution", in Conference on Artificial
Intelligence in Medicine in Europe, Springer.

2001.

[17] S.-J.Yen, and Y.-S. Lee, "Under-sampling
approaches for improving prediction of the
minority class in an imbalanced dataset”, in
Intelligent Control and Automation, Springer.
pp. 731-740, 2006.

[18] M. Kubat, and S. Matwin, "Addressing the
curse of imbalanced training sets: one-sided

selection”, in Icml. 1997. Nashville, USA.

[19] S. Gazzah, A.H., N. Essoukri Ben Amara, "A
hybrid sampling method for imbalanced data",
pp. 1-6, 2015.

[20] H. Han, W.-Y. Wang, and B.-H. Mao,
"Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning”, in
International  conference on intelligent

computing, 2005, Springer.

[21] H. He, et al, "ADASYN: Adaptive synthetic
sampling approach for imbalanced learning",
in 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress
on Computational Intelligence), 2008.

[22] G. Cohen, et al., "Learning from imbalanced
data in surveillance of nosocomial infection”,
Artificial intelligence in medicine, vol. 37(1),
pp. 7-18, 2006.

[23] S. Tang, and S-.p. Chen, "The generation

mechanism of synthetic minority class
examples”, in 2008 International Conference
on Information Technology and Applications

in Biomedicine, IEEE, 2008,.

[24] J. Stefanowski, and S. Wilk, "Selective pre-
processing of imbalanced data for improving
classification performance”, in International
Conference on Data Warehousing and

Knowledge Discovery, Springer, 2008.

Mining Methods", in IAEG/AEG Annual
Meeting Proceedings, San Francisco, California,

2018-Volume 1. 2019. Springer.

[2] S.Fotouhi, S. Asadi, and M.W. Kattan, "A
comprehensive data level analysis for cancer
diagnosis on imbalanced data", Journal of

biomedical informatics, 2019.

[3]N. Junsomboon, and T. Phienthrakul,
"Combining over-sampling and under-sampling
techniques for imbalance dataset”, in
Proceedings of the 9th International Conference
on Machine Learning and Computing. 2017.

ACM.

[4] S.A. Golder, B.A. Huberman, "Usage patterns
of collaborative tagging systems", Journal of

information science, vol. 32(2), pp. 198-208.

2006.

[5] Y. Sun, and et al., "Cost-sensitive boosting for
classification of imbalanced data”, Pattern
Recognition, vol. 40(12), pp. 3358-3378, 2007.

[6] Z.-H. Zhou, X.-Y. Liu, "Training cost-sensitive
neural networks with methods addressing the
class imbalance problem", IEEE Transactions

on Knowledge & Data Engineering, pp. 63-77.
2006.

[71N.V. Chawla, and et al., "SMOTE: synthetic
minority over-sampling technique”, Journal of
artificial intelligence research, vol. 16, pp. 321-

357.2002.

[8] E. Fernandes, and et al., "Ensemble of
Classifiers based on MultiObjective Genetic
Sampling for Imbalanced Data", IEEE
Transactions on Knowledge and Data

Engineering, 2019.

[9] A. Roy, et al. "A study on combining dynamic
selection and data preprocessing for imbalance
learning"”, Neurocomputing, pp. 179-192, 2002.

[10] W. Xie, G.Liang, Z. Dong, B. Tan, and B.
Zhang, "Mathematical Problems in
Engineering; An Improved Oversampling
Algorithm Based on the Samples”, Selection
Strategy for Classifying Imbalanced Data.

2019.

[11] V.C. Silvia Cateni, M. Vannucci, "A method
for resampling imbalanced datasets in binary
classification tasks for real-world problems"”,

Neurocomputing,Elsevier.

[12] T. M. Khoshgoftaar, A.F., D. J. Dittman and
A. Napolitano, "Ensemble vs. Data Sampling:
Which Option Is Best Suited to Improve
Classification Performance of Imbalanced
Bioinformatics Data?" 2015 IEEE 27th
International Conference on Tools with

OF 2la ¥ 5,Ll 1P+ Jlw


http://dx.doi.org/10.52547/jsdp.19.2.27
https://jsdp.rcisp.ac.ir/article-1-1010-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.52547/jsdp.19.2.27 ]

AL (5 33augd 9 ()15 halub S ) lo jl o dlaiwl b o)lgiels sLao SIS (53s03) Soup

(38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Williams, and N. Steele, "Difference,
distance and similarity as a basis for fuzzy
decision support based on prototypical

decision classes”, Fuzzy sets and systems,

vol.131(1), pp. 35-46. 2002.

S. Santini, and R. Jain, "Similarity is a
geometer", Multimedia Tools and

Applications, vol. 5(3), pp. 277-306, 1997.

R. Zwick, E. Carlstein, and D.V. Budescu,

"Measures of similarity among fuzzy
concepts: A comparative analysis",
International  Journal of  Approximate

Reasoning, vol. 1(2), pp. 221-242,1987.

S. Garcia, et al., "A study on the use of non-
parametric tests for analyzing the evolutionary
algorithms' behaviour: a case study on the
CEC’2005 special session on real parameter
optimization",  Journal  of  Heuristics,
vol.15(6), pp. 617-644, 20009.

O.T. Yildiz, O. Aslan, and E. Alpaydn,
"Multivariate statistical tests for comparing
classification algorithms,” in Learning and
Intelligent Optimization, Springer, pp. 1-15,
2011.

D.J. Sheskin, Handbook of parametric and
nonparametric statistical procedures. 2003:
Chapman and Hall/CRC.

S.Garcia, and et al., "Advanced nonparametric
tests for multiple comparisons in the design of
experiments in computational intelligence and
data mining: Experimental analysis of power",
Information Sciences, vol.180(10), pp. 2044-
2064, 2010.

Sy (Gl @ plee! s
2TV L o 1y 0 bl )8
NPle s GlS FgelS (gwaige arl,
b, 5 Shae g ol oKasls )

oBasle SIAYAY Jls jo 1) 095 al)l

BAY Gladle o 5o 5 Sl S8L)0 gt (oo 2
5 oogd,8 aly ol olyT olKsls soke Sln guae AD
dende ool ola gac 1A GloJle Gw e
wole Sla e jole b o 5 g e Giael
e oo Ll 4 jau> Cuy (gl oKl
Sl s el xSk wgledls el Ll

S 9 G)y9laS Ay )0 dedligr (gly by,
w‘ oo; 7"“"‘"“’ QLS 9 Jlas w.\o U}SL' 9
5wl &le lagl aeblly glas

e.yasrebi@torbath.ac.ir

o

&

Y 2l Vo, 1Fe) Jle

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

D.M.B. Tarigan, and D.P. Rini, "Particle
Swarm Optimization—Based on Decision Tree
of C4. 5 Algorithm for Upper Respiratory
Tract Infections (URTI) Prediction”, in
Journal of Physics: Conference Series, 10P
Publishing, 2019.

D. Devi, and B. Purkayastha, "Redundancy-
driven modified Tomek-link based
undersampling: a solution to class imbalance",

Pattern Recognition Letters, vol.aY, pp. 3-12,

Yev.

K. Javed, R. Gouriveau, and N. Zerhouni, "A
new multivariate approach for prognostics
based on extreme learning machine and fuzzy
clustering”, IEEE transactions on cybernetics,
vol.45(12), pp. 2626-2639, 2015.

X.L. Xie, and G. Beni, "A validity measure
for fuzzy clustering”, IEEE Transactions on
Pattern Analysis & Machine Intelligence,

vol.(8), pp. 841-847.1991

K.Bataineh, M. Naji, and M. Sager, "A
comparison study between various fuzzy
clustering algorithms”, Editorial Board, vol.
5, pp. 335, 2011.

Y. Ding, and X. Fu, "Kernel-based fuzzy c-
means clustering algorithm based on genetic
algorithm”, Neurocomputing, vol.188, pp.
233-238, 2016.

R.R.Yager, and D.P. Filev, "Generation of
fuzzy rules by mountain clustering”, Journal

of Intelligent & Fuzzy Systems, vol. 2(3), pp.
209-219.1994.

S.L. Chiu, "Fuzzy model identification based
on cluster estimation"”, Journal of Intelligent

& Fuzzy Systems,vol. 2(3), pp. 267-278.1994.

D. W.Kim, et al., "A kernel-based subtractive
clustering method", Pattern Recognition
Letters, vol. 26(7), pp. 879-891, 2005.

M. Y Chen, "A hybrid ANFIS model for
business failure prediction utilizing particle
swarm  optimization and  subtractive
clustering”, Information Sciences, vol.220, pp.

180-195. 2013.

S. Zeng, S. M. Chen, M. O.Teng, "Fuzzy

forecasting based on linear combinations of
independent variables, subtractive clustering
algorithm and artificial bee colony algorithm",
Information Sciences, vol.484, pp.350-366,

2019.

I. Beg, and S. Ashraf, "Similarity measures for
fuzzy sets”, Appl. and Comput. Math,
vol.8(2), pp. 192-202, 20009.

L.T. Kéczy, and D. Tikk, "Fuzzy rendszerek",
TypoTEX, Budapest, 2000.


http://dx.doi.org/10.52547/jsdp.19.2.27
https://jsdp.rcisp.ac.ir/article-1-1010-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.52547/jsdp.19.2.27 ]

Iy 09> (emlils )5 S 00 ‘s.o.ab Mgo
Gl FeelS e a3, o
olKisls )‘ YYAA JLMJ N )‘)31‘5)_,
Gy el 00S Zdle iz
S, YAY e o 1) 0 Sdass
FomelS (godige Ll 5o ployS pal ol olSisly
‘5&[‘,.‘1%)5§J| (gsools lisl adle 5,50 taghs
el el (S0l 5 Wbamaiz Pl Jo o SLolSS
) ol e ol bl s
Hatami.mahla@gmail.com

OF 2la ¥ 5,Ll 1P+ Jlw


http://dx.doi.org/10.52547/jsdp.19.2.27
https://jsdp.rcisp.ac.ir/article-1-1010-fa.html
http://www.tcpdf.org

