مقاومسازى يردار حر كت در برابر خطاى كانال

جهت بهبود كيفيت ويدئوى دريافتى

پوريا اعتضادىفر و حسن فرسى
دانشكدهٔ مهندسى برق و كامپيوتر－دانشگًاه بير جند－بير جند－ايران

Abstract

چجكيده

 داراى مقدار حركت صفر（بدون حركت）هستند با يكديگر تركيب مى شونـي

 در يافتشده را در حد قابل قبولى افزايش داد ادر اي

وازگَان كليدى：تركيب بلوكها－كدگذارى فريمهاى ويدئويى－نرخ بيت متغير－كدگذارى كانال．

تاكنون روشهاى بسيارى براى كاهش و حذف خطاى ناشى
 （Moreira，2006）．يكى از كارآمدترين اين روشها كدگذارى

 Bystrom，2000；Cheung，2000；Kondi，）میی⿰氵㔾يرنــد （2002；Zhai， 2006 ．روش بهكار گرفته شده در اين مقاله بـا

[^0]
1－مقدّمه

 استفاده از دستاوردهاى مخابرات مدرن براى ارسال دادههاى

 حال با كاهش كيفيت اندك مطرح شــدهانــد（Flierl，2004）． در مخابرات بى سيم و سيار خطاى ذاتى محيطهاى

[^1]د

 میىدهيم.
در اسـتاندارد MPEG، سـه نـوع تصـوير معرفـى كــهـ

 كروه تصاوير در شكل (1) نشان دان داده شده است.

 هستند تخمينزده مىشوند، تصوير B كفتـه میشود. نوع كدگذارى نيز از جبرانساز حركت استفار استفاده مى شود. فقط

 ذخيره شود منتظر بماند تا بتواند بـا اسـتفاده از از آن تخمـيـين
 تصوير B در اين نوع كدكَارى استفاده نمى شود.

MPEG-4 ا- ا- مرورى بر روش كدكردن

 (rوّا
 در شكلهاى مذكور (البته به غير از قسمت كدكنـنده كانـال)
يرداخته مىشود.

 مقاديرصفر، ضرايب بهصورت زيگزاتى كنار يكديگر قـرار داده

[^2]Bystrom, 2000; Cheung,) روشهاى اشارهشده در مراجع (2000; Kondi, 2002; Zhai, 2006

 بيشتر از حداقل تعداد پيكسل تعيينشده بها باعنوان حد آستانه

 نسبت به كانال، مقاومتر سازيم. يكى از مشــكـلات روشهــا Bystrom, 2000; Cheung, 2000;) (ايـن اسـت كـهـ بايــد اطلاعـات (Kondi, 2002; Zhai, 2006

 قسمت بعد به توضيح پيكرهبنـدى مقالـه اشـارها

 يا 'PSNR و همچچنين نرخ خطاى بيت يـا ميزان خطاى ايجادشده توسط كانال بر روى اطلاعات را بيان

اسـتفاده از 2 MPEG-4 part 2 بــراى دو فــريم تصـــوير تصوير

 آن مــى
 Dissanayake, 2012; Farooq Sabir,) شـده در مراجـع (2009; Elangovan, 2008
هستند) مى پرداز يم. .
${ }^{1}$ Peak Signal to Noise Ratio
${ }^{2}$ Bit Error Rate
${ }^{3}$ Intra-picture
${ }^{4}$ Predicted-Picture
 بلوك تخمينگر حر كت براسـاس معيـار محاسـبـأ كـمـتـرين
 مى كند كه نحوء كار آن براساس پيـاى مى باشد.

$$
\begin{align*}
& \operatorname{MSE}\left(\mathrm{d}_{\mathrm{x}}, \mathrm{~d}_{\mathrm{y}}\right)=\frac{1}{M_{1 N 1}} \sum_{(m, n) \Theta V}(b[m, n, k] \tag{1}\\
& \left.-b\left[m-\mathrm{d}_{\mathrm{y}}, n-\mathrm{d}_{\mathrm{x}}, k-1\right]\right)^{2} \\
& \binom{d_{x}}{d_{y}}=\arg \underbrace{\min }_{\left(d_{x}, d_{y}\right)} \operatorname{MSE}\left(d_{x}, d_{y}\right) \tag{Y}
\end{align*}
$$

در معادلهٔ ا آرگمان سوم متغير b شـامل (k) و(k-1)

 نشان مىدهد. متغير W نشاندهندهٔ پنجرهاى است كه با بايــد
 جستجو در اين بازه بهدست مى آيد؛ كه در اين مقالـه در نظر گرفته شده است. اين بدان معناست كه پنجـرهای بـا بـا اندازه 19×19 براى جستجو انتخاب مىشــود و طــول پنجـرهره

 يكديگر مقايسه مىنمايد و كمترين مقدار بـــعنـــوان يكــى از اعضاى ماتريس تخمين حركت ذخيره مـى شـود. در مرحلــهـ
 ماتريس تخمين حركت، مقدار تخمينزدهشده از فريم قبلـى كم میشود. در انتها مقدار بـهدسـت آمــده بـه بلـوكى DCT اعمال مى شود. پس از عبور از بلـوكى DCT مقـدار بـهـدسـت 1, DCT آمده با 94 سطح چندى شده و در انتها بلـو كههـا
 (Huffman, 1952; Proakis, 1995) همانطور كه در شكل (گ) نشان داده شده اسـت ابتـدا عمــل
 تبديلDCT از اطلاعات چندى شده معكوس گرفته مى شـود و در مرحله آخر با استفاده از ماتريس تخمين حركت، فـريم
 در يافتى را بازيابى مى كند.

مى شوند. با اين كار مقادير مربوط به فر كانسها گــروهبنـدى
 شكل (Y) نشان داده شده است.

وجود خطـا در هنگـام ارسـال دادههـا، باعـث از بــين رفــتن

 دادهها بهصورت بستهبندى Tاست. به اين منظور در در هر بسته

 داده شده در اول هر بسته، عمليات همزمانســـازى را دوبـاره

 جلوگيرى شود (Shi, 1999).

در اين مدل دادههاى بستهبندىشــده بــه دو ناحيــه تقســيم
 بيشتر (ضرايب DC ماتريس DCT، اطلاعات روش كدگّشايى و بردارهاى حركت) از دادهها با ارزش پايـينتـر (ضـرايب AC مــتريس DCT و خطاهـاى باقيمانــده) اسـت. بـراى ارســال تصوير II، اولين ناحيه، شامل اطلاعات روش كدگشايى منبـع و همچچنين ضرايب DC است؛ اما ناحيه دوم كه دادههـاى بـا بـا
 تصوير P اولين ناحيه شامل اطلاعات روش كدگشــايى منبـع
 شامل اطلاعات DCT (بافت، ضرايب DC و AC) است. براى
 استفاده مىشود، كه اين نشـانهگـذارى يكتاسـت. شـكل (a) نحؤُ ساختار بستهبندى براى MPEG-4 را نشان مىدهد.

[^3]\[

$$
\begin{align*}
& \alpha^{j 1}=\frac{S_{2}}{S_{1}} \Rightarrow \text { Error Place } \\
& e_{j 1}=\frac{S_{1}^{2}}{S_{2}} \Rightarrow \text { ErrorValue } \\
& \text { رابطه نرخ كدكنــدة كانـال در معادلــٔ ل نشـان داده } \\
& \text { شده است، كه واحد آن بيت بر ثانيه است. } \\
& R_{c}=\frac{k}{n} \tag{V}\\
& \text { در رابطهن، k تعداد بيتهاى مربوط به اطلاعات فـريم }
\end{align*}
$$
\]

مؤلفه هاى بالا قادر است به ميزان
و تصحيح كند. بنابراين هر چه ميزان n-k (تعـداد بيـتهـانـاى
توازن) بيشتر باشــد، تعـــاد بـيشتـرى از بـيـتهــاى پيـام را
مى توان تصحيح كرد.
F خ خطا در بردار حر كت

 2004) و الكَوريتم جديد ارائـهــــده توسـط آقـــى فـاروق در مرجع (Farooq Sabir, 2009) ، در قسمت تخمـين حر كـت

$$
\begin{equation*}
S_{1}=r(\alpha)=e(\alpha)=e_{j 1} \beta+e_{j 2} \beta_{2}+\ldots+e_{j \tau} \beta_{\tau} \tag{}
\end{equation*}
$$

$$
S_{1}=r\left(\alpha^{2}\right)=e\left(\alpha^{2}\right)=e_{j 1} \beta_{1}^{2}+e_{j 2} \beta_{2}^{2}+\ldots+e_{j i} \beta_{\tau}^{2}
$$

$$
S_{2 t}=r\left(\alpha^{2 t}\right)=e\left(\alpha^{2 t}\right)=e_{j j} \beta^{\beta^{t}}+e_{j 2} \beta_{2}^{t}+\ldots+e_{j t} \beta_{t}^{z^{t}}
$$

در سادهترين حالت، در اين كدـَــارى بـا فــرض t=1

$$
\text { مقدار و محل خطا با استفاهه از معادله } 9 \text { محاسبه مىشود. }
$$

 بلوكاند نيز حذف مى شوند. لازم به ذكر است كــه منظـور از از حذفكردن نواحى، اين است كه ديگـر آن ناحيـهـ بــهـهـورت

 م

محاسبه شده است).

 نهايیى پس از انجام عمليات حذف نواحى با تعا تعداد بلوكى كمتر

 خطاى كانال، تعداد بيت اختصاصدادهشده بـراى هـر بـر بـرار

رفته است؛ كه برخى از اين قسمتها بهعنوان نمونه در شكل (V) نشان داده شده است. با توجه به مشكل الگگوريتمهاى كدگَــذارى ويــدئو بــهـ هنگـام از دسـترفــتن اطلاعـات بــردار حركـت، الگَـوريتم پيشنههادى بهصورت زير نقص روشهـاى موجـود را برطـرف مى سازد.

ه - الگَوريتهم پيشننهادى

@- - - كدكننده الگَوريتهم پيشنههادى
 است.
الگَوريتم پيشنههادى به اين صورت عمل مى كـند كــه ابتــدا بــا

ثانويه انجام و در ادامه به توضيح آن پرداخته مىشیود.

ه- - ا- - - جستجوى ثانويه

 استخراج مىشوند. دليل اين امر آن اســت كــه بــراى ارسـال اريال
 مى شود. بنابراين براى مشخص كـردن شـكل حـوزه نيــاز بــه
 مختلفى باشد، نياز اسـت تـا اطلاعـات زيـادى بــراى ارسـال الـا

 ساختهشده تنها بر روى آنهايى ادامهٔ كار صورت مى چذيرد كه
 قسمتهايى كه ساختار مربعى يا مستطيلى دارند، نشان داده

بيت كدكنندئ كانال براى روشهاى يكسان كدگَذارى مانـــد MPEG-4 اسـت، در بــدترين حالـت نــرخ كدكنــــدئ كانـال در روش
 استاندارد MPEG-4 استفاده شود. ايـن بــدان معناسـت كــه

 حالت كدكننده به روشهاى معمول است. البته بايد بـه ايـن

 مقاومتر سازد. براى ارسال دادهها، قسمتهايى كه با با همديگر
 بلوكىها جدا مى شـوند و عــلاوهبـر ايـن انــدازء قسـمتمتهـاى تركيبشده نيز بر حسب تعداد بلوك تركيبشده در راسـتاى

 بازسازى مى شود كه بهصورت نمادين در شـكل ((l) نشـان داده شده است.

با توجه به شـكل (1 (1) تعـداد نـهـ بيـت از بيـتهـاى
 توضيحات معادله 1 نيز بيان شده است.

 استاندارد شناختدشده مانند MPEG-4 است. با ايـن تفــاوت كه بلوكهاى كدگشايىشده داراى اندازءٔ برابر ^^^ نيسـتند. همانطور كــه در نمـودار نشـان داده شــده ابتـدا لازم اسـت
 تركيبشده است يا خير. اين عمليات با استفاده از اولين بيت موجود در Header دريافتى مشخص مى شود. اگر اولين بيت،

 شامل چندين بلوك است. در قسمت بعد با استفاده از تعـداد بلوكهالى موجود در ناحئُ دريافتشده، نرخ كدگشاى كانـال

بلو ${ }^{\text {N }}$ Li
 برابر است با:
$N_{b}=\frac{16 * \sum_{i=1}^{j} L_{i} N_{i}}{\sum_{i=1}^{j} N_{i}}$
از
براى ارسال اندازه و جهت بردار حركت و نه بيت براى ارسال ساختار هر ناحيه.)
بهمنظور بررسى عملكـرد بـازدهى روش پيشــنـهادى،

 بررسى مى كنيه. بنابراين با استفاده از معادلئ \ و با توجه بــهـ
 ناحيه تعداد چهار بلوك وجود دارد، داريم:

$$
\begin{align*}
& B_{s a v}=\frac{16^{*} \sum_{i=1}^{j} L_{i} N_{i}}{\sum_{i=1}^{j} N_{i}} \xrightarrow{L_{i}=4} \\
& \frac{16 * 4 * \sum_{i=1}^{j} N_{i}}{\sum_{i=1}^{j} N_{i}}=64 \mathrm{bits} \tag{9}
\end{align*}
$$

 بهدست آمده براى ارسال يك بردار حركت اسـت كــه از ايـن

 كانال براى روش پيشــنهادى و ـــرخ كدكنـــــدأ كانـال بـراى بردارهـاى حركــت در روشهـاى معمــول ويــدئوى كدگــنار نظير MPEG-4 و همحنـنين نسبت آنها بهترتيب زير محاسـبـه مىشود:
$R_{c}^{\prime}=\frac{4}{49}=0.0816$
$R_{c}=\frac{4}{12}=0.333$
$\frac{R_{c}^{\prime}}{R_{c}}=\frac{0.0816}{0.333}=0.245$

 همحنیين نرخ ارسال فريمم برابر با با

 كدكنـنده كانال براى پنج فايل ويدئويى با نــرخ هـا هـاى ارسـال مختلف در جدول ((1) نشان داده شده است. همانطور كه در جدول ((1) نشـان داده شـده اسـت،
 كدكننده كانال را افزايش دادهايم كه افزايش اين اين ميزان باعث

افزايش مقدار انرزى فريمههاى دريافتى در گيرنده مىشود.
 آمده را با نتايج بـهدسـت آمــده از روشهـاى ديسـايـاياناياكى،
 نشاندادن بهبود فريمههاى دريافتى در گيرنده، دهمين فــريمه

 تمامى فايلهاى ويدئويى اخبـار، فـورمن (بـا فـا فرمـت CIF) و فوتبال با نرخ ارسال

 مقايسه با روش فاروق براى تمام سا I أفريم فورمن بـا بـا فرمـت نشان مىدهد. تنها تفـاوت شـكلهــاى

 است و به همراه نتايج بهدست آمده از روش فار آروق رسم شده
 منبع است و هر چه نرخ كدكنند منبع بيشتر شود، فـريمهــا

 ¢- ارز.يابى روش پيشنههادى
ابتدا به معرفى چندين پارامتر استفاده شده در شـبـيهسـازى

 Dissanayake, 2012; Farooq Sabir, 2009; Elangovan,)

 كانال استفادهشده در اين مقاله كانال دودويى متقارن

 (Ziegler, 2013)

 كرد. تعداد فريمهایى ويدئويى Foreman برابر بـا بـا است كه از اين تعداد سه فريم بهصورت تصوير I كد مد مى اسوند
 تصوير P كد و سپس ارسال مى شوند. البته بايد به اين نكتـه
 شدهاند در ابتداى هر قسمت چهرل فريمى كه با تصوير P كـد

 اين تعداد پنج فريم تصوير I و صد فريم تصوير P هستند هر بيست فريم تصـوير P بـين دو فــريم تصـوير I قـرار دارد.

[^4]هستند (از لحاظ اندازه و جهت برابر باشــند) در يــى ناحيـه قرار مىدهیهم و سپس به جاى ارسال چنـدین بـردار حركـت، يك بردار حركت به نمايندگى از تمام آنها ارسال مى شود كه نرخ كدگذارى متناسب با تعداد بيتهايى اضافى بهدستآمده از بردارهاى حر كت بلوكههـاى موجــود در هــر ناحيــه اسـت. بنابراين اعوجاجهايى را كه بهدليل خطا در بردارهاى حركـت پديد مىآينــد بـا ايـن روش بــه حــداقل رسـاندهايـمْ. نتـايج آزمايشههاى انجامگرفته نشان مىدهد كـهـ روش پيشـنـهادى رو در مقايسه با روشهاى جديد قادر است PSNR و در نتيجــه كيفيت بالاترى را براى فــريمهــاى ويـدئوى دريـافتى فـراهم

مراجع

Bystrom M. and Modestino J. W., "Combined sourcechannel coding schemes for video transmission over an additive white Gaussian noise channel," IEEE J. Sel. Areas Communication., vol. 18, no. 6, pp. 880890,Jun. 2000.

Carlson B., Communication Systems. An Introduction to Signals and Noise in Electrical Communication, 3rd Edition, McGraw-Hill, New York, 1986.

Cheung G. and Zakhor A., "Bit allocation for joint source/channel coding of scalable video," IEEE Trans. Image Process., vol. 9, no. 3, pp. 340-356, Mar. 2000.

Dissanayake M. B., "A Novel Error Robust Video Coding Concept Using Motion Vectors and Parity Bits", 7th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 1-6, 2012.

Elangovan P., "Motion Vector Smoothing Algorithm for Robust Wireless Multimedia Communications", 4th IEEE International Conference on Circuits and Systems for Communications (ICCSC), pp. 466-470, 2008.

Farooq Sabir M., Heath R. W. and Cornard Bovik A., "Joint Source-Channel Distortion Modeling for MPEG-4 Video", IEEE Trans. Image Processing. , Vol. 18, no. 1, January. 2009.

Flierl M. and Girod B., "Video Coding with Superimposed Motion-Compensated Signals", Kluwer Academic, ISBN 1-4020-7759-9 2004.

Huffman D.A., "A method for the construction of minim-um redundancy codes", Proc. IRE, Vol. 40, pp.1098-1 101, 1952.

$$
\begin{aligned}
& \text { نكتـه توجـهـ كـرد كـهـ در روش پيشـنمهادى هـر چــهـ انــدازء } \\
& \text { فريمهـاى ويــدئويى كوپــكـتـر شـود، بهبــود كيفيـت روش }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هستند، بهدليل محدودشدن فريم كاهش پی پیدا مى كند. } \\
& \text { در اين گام روش پيشنهادى را با روش الانگگان بـرا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { پيشنهادی و چندين روش جديد، به اين نتيجه رسيديم كــهـ } \\
& \text { روش پيشنهادى توانسته است بدون افزايش نرخ بيت ارسالى } \\
& \text { كيفيت فريمههاى دريافتى را افزايش دهد. } \\
& \text { در انتها روش پيشنهادى با روش معـروف جسـتجوى } \\
& \text { سه مرحلهاى (TSS)' (Kim, 1998) مقايسه شده اسـت. در }
\end{aligned}
$$

$$
\begin{aligned}
& \text { است، ابتدا در } 9 \text { ناحيأ اوليه اطراف منطقئ مورد نظر كــهـ بــهـ } \\
& \text { فاصــلهُ چهـار پيكســل اطــراف پيكســل مركــزى اســت بــهـ } \\
& \text { جستجوى كمترين تغيير پرداخته مىشود. در گَام دوم، پـس ری }
\end{aligned}
$$

$$
\begin{aligned}
& \text { انتخاب كمترين تغيير پرداخته مىشود. در آخـرين مرحلـهـه (} \\
& \text { سومين مرحله)، طول پنجره جستجو به يك پیییسل كاهش }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تمامى فريمههاى ويدئويى استفان } \\
& \text { نشان داده شده است. } \\
& \text { - V } \\
& \text { يكى از دلايل كيفيت نـامطلوب تصـاوير ويــدئويى دريـافتىى، }
\end{aligned}
$$

[^5]تحقيقاتى او پردازش سيگَنالهاى ديجيتـال، تصـوير و ويـدئو
مى باشد. نشانى رايانامةٔ ايشان عبارت است از:
P.etezadifar@birjand.ac.ir

 شهرستان بيرجند به دنيــا آمــد. دوره كارشناسى وكارشناسى ارشد خـود را
 دانشگاه صنعتى شـريف - تهـران بــهـ |YVY g |YV| ترتيب در سـالهــاى

 عضو هيئت علمى دانشگاه بير جند در آمد و مــدر كى دكتـراى

 پردازش سيگنالههاى ديجيتـال، پـردازش صـحبت و تصـوير

مى باشند.
نشانى رايانامةٔ ايشان عبارت است از:

Hfarsi@birjand.ac.ir

Kim J. N., Choi T. S., "A Fast Three-Search Algorithm with Minimum Checking Points Using Unimodal Error Surface Assumption" Proc. IEEE, vol. 44, no. 3,pp. 638-648, August 1998.

Kondi L. P., Ishtiaq F., and Katsaggelos A. K., "Joint source-channel coding for motion-compensated DCTbased SNR scalable video," IEEE Trans. Image Process., vol. 11, no. 11, pp. 1043-1052, Sep. 2002.

Moreira J. C. and Farrell P. G., "Essentials of ErrorControl Coding", John Wiley \& Sons, Ltd, 2006.
Proakis J. G., Digital Communications, Mcgraw Hill, Hardcover, 1995.

Richardson I. E. G., "H. 264 and MPEG-4 Video Compression, Video Coding for Next-generation Multimedia", New York: Wiley, 2003.

Salomon D., "Data Compression", Third Edition, Springer, 2004.

Shannon C. E., "Communications in the presence of noise," Proc. IEEE, vol. 86, no. 2,pp. 447-458, February 1998.

Shannon, C. E., "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, 623-656, July and October 1948.

Shi Y. Q. and Sun H., "Image and Video Compression for Multimedia Engineering, Fundamentals, Algorithms, and Standards", ISBN 0-8493-3491-8, 1999.

Xinb G., 2007,
http://see.xidian.edu.cn/vipsl/database_Video.html
Zhai F., Eisenberg Y., Pappas T., Berry R., and Katsaggelos A., "Rate-distortion optimized hybrid error control for real-time packetized video transmission," IEEE Trans. Image Process., vol. 15, no. 1, pp. 40-53, Jan. 2006.

Ziegler G., 2013, Video Test Media [derfs collection]; in https://media.xiph.org/video/derf/

$$
\begin{aligned}
& \text { شهرسـتان نيشـابور بــه دنيـا آمــد. دوره } \\
& \text { كارشناسى و كارشناسى ارشد خود را در }
\end{aligned}
$$

I B B P B B P B B P B B P I I P P I P P I P P I P P I P P I IIIIIIIIIIIIIIIIIII.......

GOP شكل-) (نمونهاى از ساختار)

(شكل- ז): كدكننده MPEG-4 براى تصوير P

(شكل -

(شكل- זا): مشخصنمودن نواحى كه داراى تعداد كمتر از \ddagger بلوك هستند

(شكل - זا): تصوير نهايى پس از انجام عمليات حذف
نواحى با تعداد بلوك كمتر از

(شكل - 9): نشان دادن بردارهاى حر كت محاسبهشده براى Foreman براى تصوير

(شكل- +1): مشخصنمودن قسمتهايى از تصوير كه داراى بردار
حركت برابر هستند

(شكل - (1): انتخاب قسمتهايى از تصوير كه داراى ساختار مربعى يا مستطيلى هستند

 	 عبور مبكـد	بِك بيت بر ائ مشُخص نسورن إنكه اطلاعات

(شكل- ff): نمايش بيتهاى اضاقهشده در Header براى مشخصكردن اطلاعات مربوط به ناحيه ساختهشده

(شكل- ها): نمودار ديكدكننده روش پيشنهادى
(جدول- ا): نرخ كدگذار كانال براى دو فايل ويدئويى Foreman و Walk با نرخهاى ارسال مختلف

نرخ ارسال منبع	فايل ويدئويى ارسال شده	n	k	R_{c}
rıfKbps	Foreman	10	V	-1498
va^Kbps	Foreman	10	r	- /
rMbps	Foreman	r	r	. 1.949
rasKbps	Walk	10	9	-19
DIYKbps	Walk	10	Q	-/r
1. DMbps	Walk	r	F	- /1r9
s4Kbps	News	r	rV	- /AV
144 Kbps	Foreman	4	ri	-19VV
「明 Kbps	Soccer	10	9	-19
1rA Kbps	Foreman	r	rr	- /Vf
1r^ Kbps	Suzie	4	rr	- /Vf

Farooq algorithm

PSNR $=18.55 \mathrm{~dB}$

Proposed algorithm

PSNR $=22.61 \mathrm{~dB}$

ها

(شكل- (1^): مقايسه ميانگَين PSNR براى تمامى فريمهاى اخبار بين روش پيشنهادى و الگَوريتم ديساياناياكى با نرخ توليد كدكننده \$4 Kbps منبع با مقدار

(شكل- 19): مقايسه ميانگَين PSNR براى تمامى فريمهاى فورمن بين روش پيشنهادى و الكَوريتم ديساياناياكى با نرخ توليد كدكننده
1F9 Kbps منبع با مقدار

(شكل- •Y): مقايسه ميانگَين PSNR براى تمامى فريمههاى فوتبال بين روش پيشنههادى و الگَوريتم ديساياناياكى با نرخ توليد كدكننده ras Kbps منبع با مقدار

 raf Kbps منبع با مقدار

(شكل - Pr): مقايسه ميانگَين PSNR براى تمامى فريمهاى فور من با فرمت CIF بين روش پيشنهادى و الگَور يتم فاروق با نرخ توليد
v9A Kbps كدكننده منبع با مقدار

(شكل - شץ): مقايسه مقايسه PSNR براى تمامى فريمهاى فورمن با فرمت CIF بين روش پيشنهادى و الگَوريتم فاروق با نرخ توليد كدكننده
r Mbps منبع با مقدار

(شكل- به): مقايسه ميانگَين PSNR براى تمامى فريهههاى گَردش پياده بين روش پيشنهادى و الكَوريتم فاروق با نرخ توليد كدكننده منبع با مقدار

(شكل - צץ): مقايسه ميانگَين PSNR براى تمامى فريمههاى گردش پياده بين روش پيشنههادى و الگَوريتم فاروق با نرخ توليد كدكننده منبع با مقدار $1 . \Delta$ Mbps

(شكل - YV): مقايسه ميانگَين PSNR براى تمامى فريمهاى فورمن با فرمت QCIF بين روش پيشنهادى و الگَوريتم فاروق با نرخ توليد raf Kbps كدكننده منبع با مقدار

(شكل - Y^): مقايسه ميانگَين PSNR براى تمامى فريمهاى فورمن با فرمت QCIF بين روش پيشنهادى و الگَوريتم فاروق با نرخ توليد v\&^ Kbps كدكننده منبع با مقدار

(شكل -
rMbps كدكننده منبع با مقدار

(شكل- r (ش): نمايش الگَو جستجو و نحوه پردازش بردار حركت در الگَوريتم جستجو r مرحلهاى

[^6]
[^0]: ${ }^{2}$ Joint Source and Channel Coding（JSCC）

[^1]: ${ }^{1}$ Multimedia

[^2]: ${ }^{5}$ Group Of Pictures (GOP)
 ${ }^{6}$ Reorder

[^3]: ${ }^{1}$ Packetization
 ${ }^{2}$ Packetize
 ${ }^{3}$ Marker
 ${ }_{5}^{4}$ Additive-error
 ${ }^{5}$ Data Partitioning

[^4]: ${ }^{1}$ Maheshi B. Dissanayake
 ${ }_{3}^{2}$ Muhammad Farooq
 ${ }^{3}$ Premkumar Elangovan
 ${ }_{5}^{4}$ Binary Symmetric Channel (BSC)
 ${ }^{5}$ AWGN
 ${ }^{6}$ Rayleigh fading PDF (Power Density Function)
 ${ }^{7}$ Foreman Secuences
 ${ }^{8}$ Walk Secuences
 ${ }^{9}$ News Secuences
 ${ }^{10}$ Suzie Secuences
 ${ }^{11}$ Soccer Secuences

[^5]: ${ }^{1}$ Three Step Search (TSS)
 ${ }^{2}$ Stefan

[^6]: اr^ Kbps مقدار

