خوشهبندى فراابتكارى اسناد فارسى اِكسامِاٍِلِ
 مبتنى بر شباهت ساختارى و محتوايى

على مرادى لالمى، اسد ا... شاهبهرامى، رضا ابراهيمى آتانى" و مهران عليدوستنيا گروه مهندسى كامپيوتر، دانشكدهٔ فنى، دانشگاه گيلان، رشت، ايران

چچكيده

 مؤثر است. اين روش مى تواند به منظور بهبود دقت خوشهبندى و افزايش بهرْ بورىى در بازيابى اطلاعات XML مورد استفاده قرار گَيرد.

> وارگَان كليدى: خوشهبندى، زبان فارسى، الكَور يتم رقابت استعمارى، پردازش زبان طبيعى و بازيابى اطّلاعات.

 (الجلوارى و همكاران، 11-1 (Y).
 گروهبندى يا دستهبندى اشياى دادهاى در داخل يك گروه يا خوشه است كه در ويزگگ هاى مشابه، مشترى

${ }^{3}$ Information Retrival
${ }_{5}^{4}$ Query Processing
${ }^{5}$ Data Integrity
${ }^{6}$ Web Service
${ }^{7}$ Web Mining
${ }^{8}$ Search Engine
${ }^{9}$ Bioanformatic

[^0]- ارائٔه مدل جديدى براى بازنمايى هردو ويرگیى ساختارى و

محتوايی اسناد XML.

- معرفى الگَوريتم خوشهبندى كارآمد با استفاده از رويكــرد فراابتكارى
- توانايى خوشهبندى مجموعهاى از اســناد XML همگـن و ناهمگن.
ادامئ مقاله به شرح زيــر ســازماندهى شــده اسـت، در
بخش دوم كارهاى مشابه انجامشده در زمينـــه خوشـهبنــدى اسناد XML شرح داده و در بخش سوم تعاريف اوليـــٔ مـورد نياز بيان مى شود؛ روش پيشنهادى در بخش چشهارم معرفى و ارزيابى و مقايسهٔ روش پيشنهادى در بخش پنجمى انجام و در نهايت در بخش ششم نتايج پ夫وهش ارائه مىشود.

r- كارهاى مشابه

 انجامشده در اين زمينه،مى يردازيم.
الخَــوريتم (نايــا

 سطح از ساختار است. سـاختار سـطحى شـا شـامل اطاعلاعـاتى از

7 Metaheuristic ${ }^{8}$ Edit Distance

مسطح و اسناد متنى متفاوت مى كند. مشكلات خوشه بنـدى

 XML

 بى معنا منجر مى شود. به اين مشكلات، چالشها

 هستانشناسى ' معتبر را نيز بايد اضافه كرد.

 از ويڤگی هاى اسناد XML و آن هم در محدودئ اسناد XML

 مى شود.
 شرح زير است: - معرفى چارچקوبى براى خوشهبندى اسناد فارسى XML.

[^1]سال هوّا شمارئ r بِياپیى

سلسلكمراتبى مسير عنصرهاى XML و گر هماى صفت و تنها درنظــرگـرفتن ســاختار اســناد، اطلاعــات ارزشـمندى را در خوشهبندى لحاظ نكرده است. به نظر مىرسد اگر در يــافتن
 محتوايى، ساختارى و سلسلهمراتبى بــهشـكل مناسـب بهـره گرفته مىشد، نتيجئ بهدستآمده كار آيى و كيفيـت بـالاترى داشت.
در مقاللٔ (كيم و همكاران

 آنها خوشهبندى دستخخوش نتايج بسيار متفـاوتى مـى شـود؛
 مور داستفاده در خوشهبندى است، كه مــــوتوانـد بـر تعـــداد و اندازء خوشهها تأثير گَار باشد. اگر بتوان بـه طريقـى امكـــان
 مشكل مرتفع خواهد شد. از سوى ديگر در اين مقاله بهشكل مناسبى از ساختارهاى سلسلهمراتبى و رابطــه والــد ـفرزنـــد و و

 گرَههاى صفت با ساير گرمها، خالى مانده است. مسئلهٔ مـورد توجه ديگَر محاسبه و يافتن فركـانس تمـامى گـرْهــــا بـراى
 فر كانس رويداد هر گره است كه به نظر مىرسد بهدليل نيـاز به بررسى تمامى سند XML پيحیدگی زی زمانى را بالا مى برد.

 مطرح مىكرد و كل ساختار درختى شِـماى را مــدنظـر قـرار

 با روشهاى تطبيق با محتواى اسناد استفاده مـى شـــد، دقـت خوشهبندى افزايش پیدا مى كرد.

درنظر گرفتن ساختار موجود در شِماى يعنى عنصـرهــا و و نـام بر چسبها و سطح هر عنصر، اسـتفادهٔ مناسـبـى از اطلاعـات

[^2]${ }^{5}$ Elements
${ }^{6}$ Schema

سلسلهمراتبى است. در اين روش از تابع مشـابهت سـطحى
 مورد استفاده قرار مـى گیــرد. در ايـن روش محتــواى

اسناد ناديده گرفته شده است.

 اسناد XML ارائه شده است. ساختار لبهاىیسطحى، لبههـاى الـى

 اعداد براى نمايش ساختار لبهاى سطحى مورد استفاده قـرار
 گرَهاى سطوح متوالى از سند XML است.

 مسيرهاى مطلق موجود در درخت سـند را اسـتخراج و و از آن بهعنوان اساس محاسبأ شباهت استفاده مى كند. يكى مسـير،

 تبديل يكى مسير به مسير ديگَر است؛ سپس بـا با ايجاد ماتريس مشابهت مسير عمليات خوشهبندى صورت مى گیيرد. اگــرچچــه در روش (آگـــروال و همكــاران

[^3]را معرفى مى كند و براى اسنادى كه از چنـد DTD
 براى مجموعه اسناد همگن قابل استفاده اسـت. بنـابراين بـا بـا وجــود گســتردگى منــابع توليــد اســناد XML، الگَـوريتم پيشنهمادى اين مقاله كارآيى چندانى نخواهد
 هريك از اجزاى سند پيش از اندازهگيرى شباهت ميان اسناد بهرهگيرد، سـرعت اجـراى بيشـتر و كــارآيى بهتــر الـَـوريتم حاصل مىشد. در مقاللأ (تران و همكـاران ويزگى ساختارى و محتوايی اسناد XML
 استفادءٔ مدل فضاى بردارى بازنمايى مى شود؛ سپس شـي شباهت
 درنهايت معيار شباهت كل، از تر كيـب وزنـى ايـن دو مقــدار

 با مطالعه و بررسى هر چه بيشتر مقالات، اين تصور به
 ناديدهگرفتن برخى از خصوصـيات اسـنـاد نظيــر محتـوا، نــام

 نتــايج رضـايتبخشـــى در كيفيـت و دقــت خوشـــهبنــدى بهدست آيد.

موجود در اسناد XML مینمايد ولى اگـر محتـواى اســــاد و

 الگوريتم حد آستانئ تعيين خوشهها كه توسط كــاربر تعيــين

 چشمُگیرى خواهيم بود.
در (تـا و همكــاران Y V بهدستآوردن خلاصؤ ساختارى، يك روش جد براى افزايش سرعت و سهولت محاسبأ شـباهت بـين اسـا

 غيرسلسلهمراتبى با توليد خودكار حــد آسـتانه در التَــوريتم،

زمان اجرا، بهره گيرد.

مجموعههايى از اسناد كه به لحـاظ سـا سـاختار و محتـــوا ايسـتا
 براى اسناد XML كه بهصورت پويا تغيير مى كننـد نيز لحـاظ

 همانطور كه بارها در اين نوشتار شرح داده شاد شد، چالشا

 صفات اسناد XML ناديده گرفته شده است.

${ }^{1}$ Pairwise
${ }^{2}$ Document Type Definition
 فراوانى عبارت i ام در سند أام و IDF
 ميانگين طول اسـناد مجموعـه اسـت. در ايـن فرمول پ ارامتر نرمالسازى است كه مقدار آن به طورمعمول r. r. قرار داده مىشود.
r-r- الگَوريتهم رقابت استعمارى
 محاسبات تكاملى

 كشور ${ }^{\text {r }}$ عناصر جمعيت، بهعنوان امپرياليست بهعنوان مستعمره؛، در نظر گرفتــه مسىشـونـوند. بـراى شـروع

 تشكيل مى دهند كه هر كدام به يك امپراطورى تعلق دارند

 نشان مىدهد.

[^4]r- تعاريف اوليه

در ادامه برخى تعاريف اوليأ مورد نياز براى روش پيشنهادى اين مقاله، مطرح شده است.

TF-IDF

يكى از پر كاربردترين روابط در حوزه بازيابى اطلاعات، پارامتر TF-IDF حاصـلضـرب فراوانــى كلمــه در فراوانــى معكــوس ســند

 سند، تعداد اسنادى است كه يك كلمةٔ خاص در آنها موجود بوده است. دليل مقبوليت اين روش را نسبت به ساير روشها مـىتــوان بـا توجـهـ بــه سـهولت در اسـتنفاده از ايــن روش، محاسبات كم و نتايج قابل قبـول دانسـت. فراوانـى معكـوس
 مىشود كه n مجموع تعداد اسناد مورد بر رسى است. IDF $F_{i}=\log \frac{n}{\text { DocFrequency }_{i}}+1$
كه در آن DocFrequency ${ }_{i}$ تعداد اسنادى است كه عبارت أام در آن آمده است. Weight $_{t i j}=T F_{i j} \bullet I D F_{i j}$
كــه در آن Weight فراوانى عبارت i ام در سند liم، و $\mathrm{TF}_{\mathrm{ij}}$ سند عبارت i ام در سند زام است.

Pivoted r-r-

 Pivoted

$$
\begin{equation*}
\text { Weight }_{i j}=\frac{T F_{i j} \bullet I D F_{i j}}{(1-b)+b \cdot \frac{\text { DocLenght }_{j}}{\text { AvgLenght }}} \tag{}
\end{equation*}
$$

[^5]
(شكل-
٪- ا- پ پيش پر دازش
 ساختارى و محتوايى موجود در هريكى از آنها استا استخراج و و در

[^6]
(4) و و يا هر توزيع مناسب ديگُر، است. يعنى مقـدار x تقريبـا برابر است با:
$x \approx U(0, \beta \times d)$

از جهتهاى مختلف به آن نزديكـ شود. در الگَــوريتم رقابـت استعمارى با يك انحراف احتمالى، مستعمره در مسير جـذنب
 شده است. كه بهصورت تصادفى و با توزيع يكنواخت انتخاب
 در نظر گرفته شده است.
\[

$$
\begin{equation*}
\theta \approx U(-\gamma, \gamma) \tag{D}
\end{equation*}
$$

\]

در حــين حركــت مســتعمرات بــه ســمت كشـــور
استعمار گر، ممكن است بعضى از اين مستعمرات به موقعيتى بهتر از استعمارگر برسند؛ در اين حالت كشـور اسـتعمارگر و كشور مستعمره جاى خود را با هم عوض مـى كنـنــد. قــدرت

 درصدى از ميانگين قدرت مستعمرات آن، تعيين مىشود. رقابت استعمارى، بخش مهم ديگرى از اين الگـــــر يتـم
را تشكيل مىدهد. هر امپراطورى كه نتواند بـر قــدرت خــود

 بهصورت تدريجى صورت مى پذيرد. بدين معنى كــه بــهـهــــرور زمان، امْراطورىهاى ضعيف، مستعمرههاى خود را از از دسـت

 كشورها تحت كنترل اين امپراطورى واحد، قرار مى گیيرند.

F

 داده「، محاسبأ شباهت نماى كلى از روش خوشهبندى پيشنمهادى را نشان میدهدد.

[^7]كلمات عمومى فارسى از ميزان محاسبات كم شده و كـارآيى
روشها نيز بيشتر مى شود.

(شكل- Y): ساختار ذخيرهسازى هر سند XML در مرحلهُ پيشهريرازش

گام دوم ريشهيابى r كلمهها است، يكـى از ممهـماتـرين كارها در استخراج وازگان كليدى از متون فارسى، ريشهـيـابى كلمهها است. هدف از ريشهيـابى، حــذف اضــافـات از از كلمــهـ و رسيدن به ريشٔٔ اصلى كلمه است. بدينمنظور در اين مقالــهـ

 جلوگيرى از ايجاد ريشههاى نادرست نيز، از كلمـات موجـود در پیکره فارسى بى جن

 پارامتر TF-IDF به همراه نرمال سازى Pivoted استفاده شده است. در گام آخر بـا اعمـال حــدّ آسـتانه روى وزن كلمـات، فهرست كلمههاى كليدى استخراج مىشود.

- - - بازنمايى داده

همانطور كه كفته شد، بازنمايى اسناد XML تنها با استفاده

 نظر گرفته شود. بدينمنظور مدل جديدى به نام مدل فضا فضاى
 و سـاختارى اســناد XML اسـت. مــدل فضــاى ماتريسـى،

[^8]${ }^{3}$ Vector Space Model

موجود در هر ســند اسـت. در جــدول بـرگ تيــز كلمـههــاى
 مسير است، نگَهدارى مى شود. اين كار موجب سـرعتيـافـتن عمل تطبيق و اندازه گيرى مشابهت در مراحل بعد مـى شـود. در ادامه با استفاده از اين جــدولهــانـا اطلاعـات سـانـاختارى و محتوايى اسناد خلاصهسازى مى شود. هدف از اين كار، كاهش
 مرحلئ دوم ايجاد مى شود. خلاصهسازى ساختار كه ســاده تـر است، شامل حذف مسيرهاى تكرارى از ساختار اسناد اسـت؛ اما خلاصه سازى محتوا كه پيحچيده تر است، شـامل اسـتخراج كلمات كليدى از محتواى متنى اسناد است.

(شكل- ऍ): فر آيند خوشهبندى اسناد XML در روش پيشنهادى

مراحل خلاصه سازى محتواى اســناد XML در شـكل

 فهرست از قبل آماده انجام مى گيرد. بعضـى از كلمـات مـات مثـل
 در همأ متون با فراوانى زياد وجود دارند كه ارزش محتـوايى ندارند. به اين كلمات، كلمات عمومى گفته مىشود. با با حذف

[^9]

H-

در اين مرحله توابع نزديكى براى اندازه

 سنجش مشابهت بهكار كرفتهشده، بستگّى دارد. بر بر اساس نوع

بهصورت رابطهٔ (V) تعريف مىشود.

[^10]براى بازنمايیى داده در اسناد متنى استفاده مىشود (مانيـــً
و همكاران ••• • .

(شكل - ه): فر آيند خلاصهسازى محتواى سند XML در مرحله يبش ير دازش

 وجود نداشته باشد، در موقعيت منطبق بر آن در بردار مــنـن

 نشاندهندهُ وزن آن كلمه در متن مورد نظر استـ استـ شكل (9) مثــلى از مــدل فضـاى ماتر ماتريسـى را نشـان
 كلمههاى وابسته به آن، نشان داده مى شودود. هر ستون در در اين
 درختى اسناد (R) است و هــر سـطر آن منطبـق بـر بـر يكـى از از

 الكَوريتم خوشهبندى داده شود.

براى خوشهبندى استفاده مىشود. بهطوراصولى الگوريتمههاى
 رويكرد يافتن پاسخ بهينه مورد استفاده قرار مى گیيرند. از بين الگَـوريتمهــاى بهينــهسـازى فراابتكــارى، الگَـوريتم رقابــت
 دادهها انتخاب شد (Niknama et al., 2011)؛ اما در ابتدا نياز است خوشه بندى بهعنوان يك مسئلهٔ بهينه سازى مدل شود.

 مىشود. CostFunc $=\sum_{i=1}^{n} \sum_{j=1}^{k}$ Jaccard Distance $\left(M_{i}, C_{j}\right)$ ($\wedge)$ كه در آن Mi ماتريسهاى ورودى است كه متناظر بـا يك سند XML است و C الگوريتم رقابت استعمارى بهعنوان جمعيت اوليه و بهصــورت تصادفى توليد مىشود. همحچنين n تعداد ماتريسها
 هز ينه، درعمل به هدف نهايیى خود يعنى خوشهبنـدى اسـنـاد

 ندارد و نسبت به ترتيب ورودىها نيز حساس نيست.

هـ - ارزيابى و تحليل نتايج

اين بخش شامل جزئيات دادههاى آزمـايششـــده، روشهـاى

درباره اين نتايج است.

D-1 - مجمموعه داده

 نمونهاى است كه در همايشهاى CLEF در سالهایاى و 9 • . 9 مورد استفاده قرار گرفته اسـت. نسـخأ دو، آخـرين

Jaccard Similarity $=\frac{|x \cap y|}{|x \bigcup y|}=\frac{a}{a+b+c}$
Jaccard Distance $=1-$ Jaccard Similarity
ك
 تعداد دفعاتى است كه xi=0 و كـه

 افزايش پيدا مى كند. بهعنوان مثال براى دو مــاتريس (شـكل
¢)، شباهت ماتريسى برابر با س ب. • است.

خوشهبندى - $-\boldsymbol{F}$
در اين مرحله اسناد XML كه با يكديگر مشـابه هسـتند بـر
 خوشهبندى مناسـب گـروهبنـدى مـى شــوند. الگَـوريتمهــاى
 كار گرفته شده، مرتبط هستند. الگوريتمه هـاى خوشـهـه بنـدى اسناد XML را مى توان به دو گـروه افزايشـى و دوبـهدويـى تقسيمبندى كرد.

 ايجـاد و ســس توسـط مقياسـى بـراى انــدازهییــرى XML

 افزايشى بهازاى وارد شدن هر سند XML ميزان شباهت سند
 شباهت از يك حدّ آستانأ تعريفشـــده توسـط كـاربر بيشــتر
 درغيراينصورت يى خوشهٔ جديدى ايجاد مـى شــود و در آن
قرار مى گيرد.

 بهدليل حساسيت بهترتيب اسناد ورودى و حدّ آستانه تعري شده، لذا در اين مقاله براى نخستين بار از رويكرد فراابتكارى

[^11]از نقطهنظر كمى، تعداد اسناد مورد استفاده در نسخئ يــك همشـمرى بـالغ بـر •19 هــزار ســنـد و در نســخأ دو همشهرى ^ا^ ها هزار سند متنى بوده كه مجموعه تصـاوير آن از كل متن جدا شده است. حجم يونى كدهاى مورد اسـتفاده در قالب دادههاى نسخئ يــى، . . م مگابايـت و در نسـخئه دو

اين اسناد همگى در قالـب فايـلهــاى XML و داراى
طبقهبندى مشخص هستند. در نسخئ دوم، پيوند به صفحات وب و تصاوير نيز افزوده شده است. در هر دو نسـخخه، قابليـت پرسوجو و داورى ارتباط براى مخاطبان فراهم خواهد بود. در روش خوشـهبنــدى، تر كيبـى از الگــوريتم رقابست
 مـورد اسـتفاده قــرار مـى گیيـرد. در ابتــدا، بــا تعـداد تكرارهاى محدود به جوابى نزديى به جواب بهينــه، هــمرگـرا مىشويم. بعد از بهدستآمدن مراكــز توسـط ICA، الگَـوريتـم از آنها براى شـروع فرآينـد خوشـهبنـدى بهينـه استفاده خواهدكرد.
مراحل پيادهسازى نيز بهطـور خلاصـه شـامل: توليـد جمعيت اوليه، ارزيابى تابع هدف، مرتبسازى جمعيت اوليـه بر اساس تابع هدف، شكل گيرى امپراطورىها، تقسـيمبنــدى مستعمرات، اجراى الگوريتم K-means روى هر امپراطــورى، حركت مستعمره به سمت استعمارگر، اجراى عملكرد جهشى، مقايسُٔ تابع هدف مسـتعمرات، مقايســـٔ مقـدار تـابع هـدف، رقابت بين اميراطورىها، نابودى ضـعيفتـرين امپراطــورى و آزمايش تعداد امپراطورىها است.

-

 شكل (9) نشان داده شده است. در اين نمودارها محور افقى روش بازنمايیى مورد استفاده و محور عمودى مقدار پارامتر , را نشان مىدهد. اين مقايسهها بهخوبى بيان گر اين واقعيت است كه ميزان كارآيى روش پيشنهانى بهمراتب XML بهتر از روشهايى است كه تنها از يك ويزگگى اسناد رين براى خوشهبندى استفاده مى كنند.
 ساختارى با يكديگر متفاوتند بنابراين براى افزايش ناهمرگّ اينى در سـاختار و محتــواى مجموعـه داده، مجموعـــه مقالـههــاى خبرى دو سال مختلـف، متعلـق بـه هـر كــدام از نسـخه هــا بهصورت تصادفى انتخاب شد.

> - - - معيار ارزيابى

براى ارزيابى نتايج از پارامتر Fmeasure

 (• (1) و (1) نشان داده شده است.
Precision $=\frac{T P}{T P+F P}$
Recall $=\frac{T P}{T P+F N}$
$F_{\text {mesure }}=2 \times \frac{\text { Pr ecision } \times \text { Re call }}{\text { Pr ecision }+ \text { Re call }}$
 كه مشابه هستند؛ يعنى خوشههاى صحيح، FP تعداد اسـنـاد خوشهٔ Ci است كه شبيه نيستند؛ يعنى خوشـههـاى اشـتباه، نيز تعدادى اسنادى اسـت كـه در CN باشند. واضح است كه هر چه Fmeasure به يك نزديكتر باشــد، خوشهبندى بهترى صورت گرفته است.
ه- - و- ويزثَى هاى آزمايش

 هر سرى از پرسوجوهـا شـامل پنجـاه موضـوع بـهـ دو زبـان
 پرداخته شده است و معيارى براى استفاده از كلمات كليـدى

در آزمايش باششمار مىرود.
خوشههاى انتخابى در آزمايش با اعدا اعداد ثابت دو، نــه و و
هجده مورد استفاده قرار گرفتهاند. علت انتخاب خوشهها بـهـ اين دليل است كه از دو نسخءٔ همشهرى يك و دو مو معادل دو خوشه استفاده كردهايم. هر خوشه نيز از نظر موضوعى به نــهـ دسته تقسيمبندى مـى شــود. از ديــد كاه محتــوايى و فــارغ از از انتخاب نسخههاى همشمرى نيز بهطور كلى با هجده موضوع متمايز در دو نسخه مواجه هستيم. اين عوامل، انگَيزه اصـلى در انتخاب خوشهها هستند.

K-Means استفاده از مدل فضاى بردارى و تنهـا اسـتفاده از الـا
است كه در (زانگَ و همكاران ^ • • ب) آمده است. در شكل (V) مقايسٔ دقـت روش پیشــنهمادى و روش خوشهبندى ساختارى نشان داده شده است. از آنجاكه اسناد بهلحاظ ساختارى، يا متعلق به نسـخئ يــــ و يــا متعلـق بــه نسخئ دو مجموعأ همشهرى است، بنابراين مجموعـــهـ اســنـاد
 هنگامى كه تنهيا از شباهت ساختارى يعنى مسـيرهارهاى مشـابه
 خوشهبندى استفاده مى شود، پارامتر Fmeasure برابر يك مىشود كه بهترين حالت است.

خوشـهبنـدى محتـوايى نشـان داده شــده اسـتـ. از آنجاكــه مجموعهٔ اسـنـاد همشـهرى از نظـر محتـوا شـامل نــه طبقـهـ

 اسـتفاده مــىشـود، پــارامتر F F آن پيشنهادى كمتر است؛ زيــرا در روش پيشــنـنهادى، اسـتخراج وازڭگان كليدى از محتواى اسناد كه در مرحلئه پـيشپـردازش

 افزايش دقت ريشهيابى در مرحلهُ پيشی پردازش مى توان روش پيشنهادى را بهبود بخشيد.
 خوشهبندى تركيبى ساختارى و محتـوايى نشـان داده شـانــا
 به دو خوشه و محتوايى به نه خوشه تقسيمه مى شوده، بنابراين

 مى دهد و براى هر مجموعه از اسناد اين ضرايب وزنى ممكن

 مبتنى بر شباهت ساختارى و محتوايى اسناد XML استفاده سال هوهr شمارئ r بيايى rA

XML.
(شكل - (): مقايسؤ كار آيى روش خوشهبندى پيشنهادى و
خوشدبندى ساختارى

تعناد خوثه-9

(شكل - ^): مقايسهٔ كار آيى روش خوشهبندى پيشنهادى و خوشهبندى محتوايى

(شكل - 9): مقايسهٔ كار آيى روش خوشهبندى پيشنهادى و خوشهبندى تركيبى ساختارى و محتوايى

در تمامى نتايج بهدستآمده، از دو روش پيــادهسـازى
استفاده شده است. يكى روش SCMSM است كه مبتنى بـر
 ماتريسـى ارائـهشــده در ايـن مقالــه اســتـ روش دوم، روش مبتنى بر تركيب شباهت ساختارى و محتـوايى بـا

Choi, I., Moon, B., and Kim, H.-J. 2007. "A clustering method based on path similarities of XML data". Data \& Knowledge Engineering, Vol.60, pp.361-376.
Hwang, K.H., Ryu, K.H., 2010, "A weighted common structure based clustering technique for XML documents", Journal of Systems and Software, Vol. 83 No.7, pp.12671274.

Kim, T. S., Lee, J. H., and Song, S. W., 2008. "Semantic Structural Similarity for Clustering XML Documents". Convergence and Hybrid Information Technology, 2008. ICHIT '08. International Conference on, Vol.60, pp. 552557.

Lee, M.L. , Yang, L.H. , Hsu, W., Yang, X., 2007. "XClust: Clustering XML Schemas for Effective Integration", International Symposium on telecommunications.
Manning, C. D., Raghavan, F., and Schuetze, H., 2008 , "Introduction to Information Retrieval", Cambridge University Press.
Nayak, R. 2008. "Fast and effective clustering of XML data using structural information", Knowledge and Information Systems, Vol. 14, No.2, pp.197-215.
Nayak, R. and Iryadi, W., 2006. "XML schema clustering with semantic and hierarchical similarity measures", Knowledge-Based Systems, Vol.20, No.4, pp.336-349.
Niknama, T.,Taherian Fardb, E., Pourjafarianb, N., Roustaa, A., 2011, "An Efficient Hybrid Algorithm Based on Modified Imperialist Competitive Algorithm and Kmeans for Data Clustering", Journal Engineering Applications of Artificial Intelligence, Vol. 24 No.2, pp.306-317.

Rusu, L.I., Rahayu, W., Taniar, D., 2008, "Intelligent Dynamic XML Documents Clustering", 22nd International Conference on Advanced Information Networking and Applications, Vol. 14 No. 3, pp. 449-456.

Ta, N., Wang, J., Feng, J., Zaki, M., 2007. "Xproj: a framework for projected structural clustering of xml documents", KDD '07 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 46-55.
Tagarelli, A., Greco, S., 2010, "Semantic Clustering of XML Documents", ACM Transactions on Information Systems, Vol.28, No.1, pp.1-56.
Tran, T., Nayak, R., Bruza, P., 2008, "Combining Structure and Content Similarities for XML Document Clustering", 7th Australasian Data Mining Conference, Vol.87, pp.3541.

Xu, R., Wunsch, D., 2005, "Survey of clustering algorithms", Neural Networks IEEE Transactions on, Vol.16, No.3, pp.645-678.
Zhang, L., Li, Z., Chen, Q., Li, N., 2010, "Structure and Content Similarity for Clustering Xml Documents", WebAge Information Management, Vol. 6185, No.1, pp.116124.

على مرادى لالمى مدر ك كارشناسـى
مهندسى كـامثيوتر را در سـال الا

ارشد رشتأ مهندسى نرمافزار دانشـكاه

$$
\begin{aligned}
& \text { شده، هنگًامى كه تعداد خوشه هجــده اسـت، مقــدار پــارامتر } \\
& \text { به مقدار مطلوب يا همان يــى بسـيار نزديــى شــده } \\
& \text { است كه نشان از دقت خوشهبندى اين روش دارد. } \\
& \text { ¢- نتيـجهدگَيرى و ادامهٔ كار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ساختارى و محتوايی اسـناد XML اسـت؛؛ سـپس از تر كيـب } \\
& \text { معيـار شـباهت جاكـارد بـا رويكـرد فراابتكــارى در فرآينــد } \\
& \text { خوشهبندى استفاده شد. نتايج تجربى نشان مىددهد، استفاده } \\
& \text { همزمان از اطلاعات سـاختارى و محتـوايى اسـناد XML در }
\end{aligned}
$$

$$
\begin{aligned}
& \text { راهبردهاى معنايى و معيارهاى شباهت مناسـب بـراى بـاى بهبــود }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اين مقاله فرض شده است كه مجموعـه اسـناد XML ايسـتا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { پويا ارائه كرد. اسناد XML پويا، اسنادى است كـه در طــول } \\
& \text { زمان دچار تغيير و بههنگًامسازى مى شونـد و با توجه بها ايــن } \\
& \text { تغييرات، خوشههاى موجود نيز بايد بهروزرسانى شوند. } \\
& \text { - مراجع - V }
\end{aligned}
$$

Aggarwal, C. C., Ta, N., Wang, J., Feng, J., and Zaki, M. J. 2007. "Xproj: a framework for projected structural clustering of XML documents", In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07), pp.46-55.
AleAhmad, A., Amiri, H., Darrudi, E., Rahgozar, M., Oroumchian, F., 2009, "Hamshahri: A Standard Persian Text Collection", Journal of Knowledge-Based Systems, Vol. 22 No.5, pp.382-387.
Algergawy, A., Mesiti, M., Nayak, R., Saake, G., 2011. "XML Data Clustering: An Overview", ACM Computing Surveys Journal, Vol. 43, No. 4.
Antonellis, P., Makris, C., and Tsirakis, N. 2008. "XEdge: Clustering homogeneous and heterogeneous XML documents using edge summaries", In Proceedings of the 2008 ACM Symposium on Applied Computing (SAC). Brazil, 1081-1088.

Atashpaz, E., Lucas, C., 2007, "Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialist Competition", IEEE Congress on Evolutionary Computation, pp.4661-4667.
Bijankhan, M., 2006. "Naghshe Peykarehaye Zabani dar Neveshtane Dasture Zaban: Mo'arrefiye yek Narmafzare Rayane'i [theRole of Corpus in generating grammar: Presenting a computational software and Corpus] ", Iranian Linguistic Journal, Vol. 19 pp. 48-67.

سيستمههاى نرمافزارى، امنيـت شـبكه، شـبكههــاى گمنــام، بهينهسازى سيستمههاى نرمافزارى و زمينههاى تئورى مرتبط

با زبانهاى برنامهسازى. نشانى رايانامئ ايشان عبارت است از: alidoost@msc.guilan.ac.ir

گيلان است. زمينههاى پروهشى مورد علاقئ ايشـان عبارتنــد از: پردازش زبان طبيعى، شبكههاى اجتمـاعى، وب معنـايـى،
متن كاوى و داده كاوى.
نشانى رايانامئ ايشان عبارت است از: amoradii@webmail.guilan.ac.ir

اسد ا... شاهبهرامى مدر ك كارشناسى

ســال آVY ا دريافــت كــرده اســت.
همچֶنين كارشناسـى ارشـد خـود را از

درجئ دكتراى خـود را نيــز از دانشـعگاه
صنعتى دلفت هلنـد در سـال ITAV اخــذ كــرده و در حـال حاضر، ايشان عضو هيئت علمى و دانشيار در دانشكده فنى و مههندسى دانشگاه گيلان اسـت. زمينـههــاى پثزوهشـى مـورد علاقـــٔ ايشــان عبارتنــد از: معمــارى پيشــرفته كــامپیيوتر، برنامنويسى SIMD، و پردازش ويدئو و تصـلوير ديجيتـال و معمارى قابل پيكربندى. نشانى رايانامئ ايشان عبارت است از: shahbahrami@guilan.ac.ir
 rebrahimi@guilan.ac.ir

مهـــران عليدوســتننيـــا مــدر ى كارشناسى خود را از دانشگاه گيلان در
 كارشناسى ارشد خود را نيز از دانشـعًاه
 زمينههاى پثوهشیى مـورد علاقــٔـٔ ايشـان عبارتنــد از: امنيـت

[^0]: ${ }^{1}$ Extensible Markup Language
 ${ }^{2}$ Self-Describing

[^1]: ${ }^{1}$ Ontology
 ${ }^{2}$ Semantic
 ${ }^{3}$ Matrix Space Model
 ${ }^{4}$ Path
 ${ }^{5}$ Jaccard
 ${ }^{6}$ Imperialist Competitve Algorithm

[^2]: ${ }^{3}$ Threshold
 ${ }^{4}$ Sibling

[^3]: ${ }_{2}^{1}$ Level Similarity
 ${ }^{2}$ Level Edge

[^4]: ${ }^{2}$ Evolutionary Computation
 ${ }^{3}$ Country
 ${ }^{4}$ Imperialist
 ${ }_{6}^{5}$ Colony
 ${ }^{6}$ Empire

[^5]: ${ }^{1}$ Inverse Document Frequency

[^6]: ${ }^{3}$ Similarity Computation

[^7]: ${ }^{1}$ Pre Proccessing
 ${ }^{2}$ Data Representation

[^8]: ${ }^{2}$ Steamming

[^9]: ${ }^{1}$ Stop Words

[^10]: ${ }^{1}$ Jaccard

[^11]: ${ }^{1}$ Pairwise

