1. [1] E.W.T.Ngai, Y. Hu, Y.H.Wong, Y.Chen, and X. Sun, "The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature," Decis. Support Syst., vol. 50, no. 3, pp. 559-569, 2011. [
DOI:10.1016/j.dss.2010.08.006]
2. [2] A. Hosseini, A. Rezaei, " Fraud detection and solutions to deal with it in insurance organizations using data mining (case study: Social Security Organization) ", Social Security Quarterly, vol. 14, no. 1, pp. 111-136.
3. [3] S. M. Taqwa Fard, z. Jafari, "Detecting Fraud in Car Insurance Using Fuzzy Expert System", Information Technology Management, vol. 7, no. 2, pp. 239-258, 2014.
4. [4] A. Ghorbani and S. Farzai, "Fraud Detection in Automobile Insurance using a Data Mining Based Approach, " Int. J. Mechatronics, Electr. Comput. Technol., vol. 8, no. 27, pp. 3764-3771, 2018, doi: IJMEC/10.225163.
5. [5] M. Firouzi, M. Shakuri, L. Kazemi, S. ascetic; "Identifying fraud in car insurance using data mining methods", Insurance Research Journal, vol. 26, no. 3, p. 103-128, 1390.
6. [6] "Viaene, S. and Dedene, G., 2004. Insurance fraud: issues and challenges. Geneva Papers on Risk and Insurance and Practice, 29, pp.313-33.". [
DOI:10.1111/j.1468-0440.2004.00290.x]
7. [7] N. Haji Heydari, S. Khalaha and A. Farahi; "Classification of the risk level of car insurance policyholders using data mining algorithms (case study: an insurance company), " Insurance Research Journal, vol. 26, no. 4, p. 107-129, 1390.
8. [8] L. Hosseinzadeh, "Categories of target customers in the insurance industry using data mining", master's thesis, Tarbiat Modares University, 2016.
9. [9] J. Aghabeigi and S. Rezaei, "Validation of credit customers of Melli Bank based on data mining techniques (logistic regression) ", 2016.
10. [10] R. Tehrani and M. F. Shams, "Designing and explaining the credit risk model in the country's banking system, " Journal of Social Sciences and Humanities of Shiraz University
11. [11] M. Mohammad Khan, M. Ismaili, and M. Yarahamdi, "Designing a credit risk assessment model for bank customers using a logistic regression model," 2017.
12. [12] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, "An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, " Pattern Recognit., vol. 44, no. 8, pp. 1761-1776, 2011. [
DOI:10.1016/j.patcog.2011.01.017]
13. [13] Z.-G. Liu, Q. Pan, J. Dezert, and A. Martin, "Combination of classifiers with optimal weight based on evidential reasoning," IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1217-1230, 2017. [
DOI:10.1109/TFUZZ.2017.2718483]
14. [14] M. A. Duval-Poo, J. Sosa-Garcia, A. Guerra-Gandón, S. Vega-Pons, and J. Ruiz-Shulcloper, "A new classifier combination scheme using clustering ensemble, " in Iberoamerican Congress on Pattern Recognition, 2012, pp. 154-161. [
DOI:10.1007/978-3-642-33275-3_19]
15. [15]B. Krawczyk and M. Woźniak, "Untrained weighted classifier combination with embedded ensemble pruning, " Neurocomputing, vol. 196, pp. 14-22, 2016. [
DOI:10.1016/j.neucom.2016.02.040]
16. [16]R. Pan, T. Yang, J. Cao, K. Lu, and Z. Zhang, "Missing data imputation by K nearest neighbours based on grey relational structure and mutual information, " Appl. Intell., vol. 43, no. 3, pp. 614-632, 2015, doi: 10.1007/s10489-015-0666-x. [
DOI:10.1007/s10489-015-0666-x]
17. [17]D. E. N. Frossard, I. O. Nunes, and R. A. Krohling, "An approach to dealing with missing values in heterogeneous data using k-nearest neighbors, " arXiv Prepr. arXiv1608.04037, 2016, [Online]. Available: http://arxiv.org/abs/1608.04037
18. [18]V. Kumar and S. Minz, "Feature selection: a literature review, " Smart Comput. Rev., vol. 4, no. 3, pp. 211-229, 2014, doi: 10.1504/ijise.2013.052279. [
DOI:10.1504/IJISE.2013.052279]
19. [19] M. V. Erp, L. G. Vuurpijl, and L.. Schomaker, "An Overview and Comparison of Voting Methods for Pattern Recognition, " in Proc. of the 8th International Workshop on Frontiers in Handwriting Recognition (IWFHR-8), Niagara-onthe-Lake, Canada, 2002, pp. 195-200.
20. [20] L. A. Alexandre, A. C. Campilho, and M. Kamel, "Combining independent and unbiased classifiers using weighted average, " in Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 2000, vol. 2, pp. 495-498.
21. [21]R. Yager and L. Liu, Classic Works of the Dempster-Shafer Theory of Belief Functions, vol. 219. 2008. doi: 10.1007/978-3-540-44792-4. [
DOI:10.1007/978-3-540-44792-4]
22. [22]P. Civicioglu, "Backtracking Search Optimization Algorithm for numerical optimization problems, " Appl. Math. Comput., vol. 219, no. 15, pp. 8121-8144, 2013. [
DOI:10.1016/j.amc.2013.02.017]
23. [23]D. M. W. Powers, "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation, " J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37-63, 2011.
24. [24] M. T. Fard, F. s. Hosseini, and M. Kh. Babaei, "Hybrid Credit Rating Model Using Genetic Algorithms and Fuzzy Expert Systems (Case Study: Qavamin Financial and Credit Institute), " Information Technology Management, vol. 6, no. 1, pp. 31-46, 2013.
25. [25] M. Salehi and A. Katoli, "Choosing the optimal features in order to determine the credit risk of bank customers, " Smart Business Management Studies Quarterly, vol. 6, no. 2, pp. 129-154, 2016.