روشی جدید برای طبقه‌بندی نانو‌اختارها براساس آنالیز سری زمانی و منطق فازی

نوشین بیگدلی* & حامد جباری
گروه مهندسی برق، دانشگاه فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده
میزان پراکندگی نانوذرات در نانو‌اختارها، از مهم‌ترین شاخص‌هایی است که جهت تایید کارآیی روش‌های پیشنهادی در زمانی سنتر نانوذرات به کار می‌رود. تصاویر میکروسکوپی الکترونی روی شیاهی توضیح بالا در مقیاس نانومتری نانوذرات هستند. در این مقاله، یک الگوریتم جدید جهت طبقه‌بندی نانو‌اختارها با استفاده از این تصاویر ارائه شده است. به‌بنابراین، ابتدا تصاویر میکروسکوپی الکترونی روی شیاهی تدوین‌شده و مشخصات آنها از طریق روش‌های تحلیل سری زمانی مورد بررسی قرار گرفته‌اند. سپس، یک الگوریتم با استفاده از مدل‌های مهندسی استنتاجی برای طبقه‌بندی تصاویر میکروسکوپی نانو‌اختارها در سه گروه خوب، متوسط و بد در نظر گرفته شده‌اند. این الگوریتم بروی تصویر میکروسکوپی نانوذرات با ابعاد یک‌ضیان (50 پیکسل) عمل کرده و درصد از 93 درصد بیشتری از دنبال‌اندازی که به یک مناسب است.

واژگان کلیدی: تصویر میکروسکوپی الکترونی روی شیاهی، تحلیل سری زمانی، طبقه‌بندی الگوریتمی، منطق فازی.

A New Method for Classification of Nano-Structures based on Time Series Analysis and Fuzzy Logic

Nooshin Bigdeli* & Hamed Jabbari
Department of Electrical Engineering, Faculty of Technical and Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract
Dispersion of nanoparticles in nanostructures is one of the most important indicators designed to verify the effectiveness of proposed methods in the synthesis of nanomaterials. In the recent years, various methods have been suggested for the synthesis of nanostructures in which the Scanning Electron Microscopy (SEM) has been used to show the quality of the nanomaterial. The SEM images of nanoparticles contain structural, chemical and morphological information with high resolution in nanometer scale of nanomaterials.

One of the challenges in the quality of dispersion’s nanostructures is detection of agglomeration degree. In some SEM images of nanoparticles, the particles have speeded uniformly and not aggregately. In some of the other SEM images, their particles are agglomerated. Also, there are a few SEM images of nanoparticles that their particles aren’t very aggregate or diffused. If the SEM images of nanoparticles with their particles speeded uniformly, are called good images, and the images with their aggregate particles are called bad images, and the images with their particle dispersion between good and bad images, are called average images, the nanomaterials can be classified in categories of good, average, and bad images.

In this paper, a new algorithm has been provided to classify nanostructures using SEM images of nanoparticles. For this purpose, these images were transformed to time series at first (the time series extracted

* Corresponding author

* نویسنده عهده‌دار مکاتبات

سال 1396 شماره 3 یکم 32
کلخوگی 1 نانوذرات است. در بررسی بسیاری از تصاویر نانوذرات مشاهده می‌شود که نانوسرت‌ها در پراکنده‌ی دوخت و وجود یا عدم وجود کلخوگی در ساختاران با یکدیگر متفاوتند. در برخی از تصاویر SEM نانوذرات تشکیل گذشته آنها به‌صورت پرتو کامل منظم و یک‌پنکت در سراسر ماده پخش می‌شوند. این نظر در برخی تصاویر دیگر وجود ندارد و حتی ممکن است نانوذرات تشکیل‌دهنده آنها به‌صورت چسبیده و کلخوگی شده بوده و در این پراکنده کمتری بینشند. به‌طور کلی، در بررسی کیفی نانو‌ساختارها از طریق تصویربرداری SEM یک نمونه کار پراکنده نانوذرات است که تصاویر آن به‌صورت منظم و یک‌پنکت در سراسر ماده پخش می‌شود، تصاویر خوب نامیده می‌شوند. همچنین، تصاویری که نانوذرات اندارایی کلخوگی و انبساطی بوده، تصاویر بدبینه و تصاویری که از نظر پراکنده نانوذرات بین این دو باند، تصاویری چسبیده و پرتو کامل منظم نانوذرات به‌صورت خوب، متسوکت و به‌طور مفیدی کردن معنی‌داری دارند. به‌عنوان مثال در شکل (1) سه تصویر SEM مربوط به نانو‌ساختارها، خوب، متسوکت و بد دیده می‌شود.

1 - مقدمه

نانو‌فرآوری یا فناوری نانو یکی از جدیدترین موضوعات کاربردی در حال رشد و میان رشته‌هایی است که در دهه‌های اخیر با پیشرفت‌های فناوری‌های نوین به‌شرکت می‌رود. در فرهنگ لغت فناوری نانو عبارت است از توانایی طراحی و ساخت تولید کنترل و استفاده مواد در مقیاس نانو [11]. ماهیت فناوری نانو توانایی کار در ابعاد مولکولی حتی زیر پیکسکد نانوامیر با هدف ارائه موکول‌ها و تغییر در ساختارها و دستیابی به ابزاری نوری می‌باشد. درمانگاه، فناوری نانو فردین دستکاری و تولید مواد جدید توسط کنترل آنها در مقیاس اتمی است [12]. اندوراز درمانگاه در فناوری نانو مهم است. این موضوع نانوذرات نوی ساختاری متفاوت است؛ به‌طور معمول نانوذرات 1 موادی هستند که دستگاه کیمی از ابعاد آنها کوچک‌تر از یک پیکسکد نانوامیر باشد [13]. امروزه نانوذرات و فناوری نانو کاربردهای پیشنهادی از معماری متفاوت از جمله پیش‌نهاد [14]. فیزیک کاربردی [15] تصویربرداری [6]، درمان سرطان [17] و شیمی [18] در زمینه میکروسکوپی الکترونی روبشی (SEM) با کمک (SEM) میکروسکوپی الکترونی، تصویر احساسی به گریفه‌های داده شده در آزمایش‌های شیمیایی را به‌صورت تصویر دیده می‌شود. میکروسکوپی الکترونی کاربردی در تحلیل مواد فیزیکی یعنی شکل آنها، ساختار و نحوه فرآیندهای شیمیایی در محیط نانو ماده است. در سال‌های اخیر روش‌های متنوعی برای ساخت نانو‌ساختارها پیشنهاد شده است که در شیپتر موارد از تصاویر SEM چشمه‌پذیراند. کیفیت نانوذرات حاصله استفاده شده است. یکی از مسائل چالشی در کیفیت سنجی نانو‌ساختارها، تشخیص مقیاس

1 Nanoparticles
2 Scanning Electron Microscope (SEM)
3 Nano-Structures

4 Agglomeration
تصاویر مذکور دارد. همچنین تحلیل خطای طبقه‌بندی مشاهده می‌شود. نشان می‌دهد که این مواد مورد نظر که از فلزات سونها نیز باشد، گروه اصلی‌ترین گروه در دو گروه مشاهده می‌کند که یکی از آن قطعات گروه مخصوص است. با این حال زمانی که گروه مخصوص توجه می‌کند، به آنها توجه می‌کند. با این حال، نتیجه‌گیری می‌شود که این مواد به دو گروه گروه‌های متفاوت دارند. نشان می‌دهد که این مواد باید با دو گروه تحقیق می‌گردد. نشان می‌دهد که این مواد B-الف (شکل-1): تصاویر SEM نانوذرات. (الف) تصویر SEM سیلیکا که تصویری خوب از (ب) تصاویر SEM نانوذرات نقشه که تصویری خوب است. (ج) تصاویر SEM نانوذرات سبز که تصویری بد به شمار می‌رود.
۲- استخراج و تحلیل سری زمانی

تساوی میکروسکوپی نانومواد و تغییر آماره‌های مناسب جهت طبقه‌بندی آنها

هامان‌گونه که گفته شد، در این مقاله با تبدیل تصاویر نانوساختارها به سری زمانی و تغییر آنها، یک موتور استنتاج فازی جهت طبقه‌بندی خودگار این تصاویر ارائه می‌شود. این موتور به شیوه‌ی یک تصویر SEM بسیار تحقیقاتی می‌شود و مشابه با تصویر سری زمانی برداشته شده می‌باشد. این تصویر SEM زمانی، آماره‌های مناسب جهت بررسی سری تبدیل شده است. استخراج سری تبدیل تصاویر میکروسکوپی نانومواد به سری زمانی

سری زمانی مجموعه‌ای از مشاهدات و داده‌های آماری است که در اعمال زمانی یا با ترتیب و منظم جمع‌آوری شده‌اند. تحلیل سری زمانی شامل روش‌هایی برای تحلیل داده‌های منظم استخراج و وزن‌های خاص از آن‌ها است. تحلیل سری زمانی در داده‌کاوی [18]، آماری الگو [16]، پیش‌بینی [17] و علوم پایه کاربردهای بسیاری دارد. به‌دیگری که اساس کار در تحلیل سری‌های زمانی تحلیل داده‌های زمانی است، برای بررسی هر هدفی در این رويه‌ها باید داده‌های منظم جمع‌آوری شده یا برای بررسی خصوصیات تصویر نیاز به استفاده از SEM ایجاد پیکسل‌ها ترکیب داده‌های خود را به سری هزینه زمانی آنها تبدیل کرد. در مراجع مختلف، روش‌های مختلف برای تبدیل تصاویر به سری‌های زمانی جهت داده‌کاوی پیشنهاد شده که هر یک پیچیده‌گی‌ها و کاربردهایی دارد. [18] رویه‌ی بر مبنای مقدار فاصله از مرکز شکل پیکسل‌های شده است. به‌طوری که این مدل شکل استخراج پیشنهاد شده است. به‌طوری که این مدل شکل استخراج پیشنهاد شده است.

\[
X = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}
\]

به طوری که:

\[
D_1 = \begin{bmatrix} C_1 & C_2 & \ldots & C_N \end{bmatrix}
\]

\[
D_2 = \begin{bmatrix} C_1 & C_2 & \ldots & C_N \end{bmatrix}
\]

\[
D_3 = \begin{bmatrix} C_1 & C_2 & \ldots & C_N \end{bmatrix}
\]

که در آن، \(C_i \) (امضی سنتون از پیکسل‌های هر بعد است. نمونه‌ای از سری‌های زمانی برای تصویر نانوذرات شکل (1) در شکل‌های (2-6) و (4-6) دیده می‌شود. در این پژوهش، با تکرار الگوریتم بین‌شانه‌برای تصاویر SEM ۵۰ تصویر نانوذرات استخراج سری زمانی از آن‌ها، به‌وسیله خصوصیات آن‌ها پرداخته شده است. با بررسی‌های انجام‌شده در مرحله نخست، آن‌ها به‌وسیله مواقع شده که سری زمانی استخراج‌شده برای هر تصویر منحصر‌بود است. همچنین مشاهده شد که تمامی

1 MATLAB

سال ۱۳۹۶ شماره ۲ بهمن ۲۲
می‌توان کرد. شکل‌های (۲) و (۳) مقایسه هیستوگرام‌های سری زمانی اصلی و یک دوره تناب‌زدن از آن را برای هر کدام از تصادف‌های (۱) نشان می‌دهند. با توجه به این شکل‌ها می‌توان مشاهده کرد که نخست‌اکنون سری زمانی بدست‌آمده از یک دوره تناب‌زدن، خصوصیات کل سری زمانی را حفظ می‌کند. دوماً این چه هیستوگرام و در نتیجه خصوصیات آماری سه نوع تصویر معرفی شده در شکل (۱) شامل تصویر خوب، متوسط و بد با یکدیگر متفاوتند.

(شکل-۳): مقایسه سری زمانی اصلی با یک دوره تناب‌زدن از آن در تصویر نانوذرات شکل (۱-ب). (الف) سری زمانی اصلی، (ب) یک دوره تناب‌زدن از سری زمانی، (ج) هیستوگرام شکل (۲-الف)، (د) هیستوگرام شکل (۲-ب).

(Figure-3): The comparison of the original time series with a period of its in the SEM image of the nanoparticles of Figure (1-b).
(a) The original time series, (b) A period of the time series, (c) The histogram of Figure (3-a), (d) The histogram of Figure (3-b)

رشد معادل طیف‌بندی نانوذرات سلول‌های منحل حائز برای SEM نانوذره یک سری زمانی منحل حائز برای برای بررسی ویژگی‌های آن از یک دوره تناب‌زدن سری زمانی آن استفاده می‌شود. به‌دلیل آن که برای هر تصویر SEM نانوذره یک سری زمانی منحل حائز برای وجود دارد. برای بررسی ویژگی‌های آن از یک دوره تناب‌زدن سری زمانی آن استفاده می‌شود. (شکل-۲): مقایسه سری زمانی اصلی با یک دوره تناب‌زدن از آن در تصویر هیستوگرام شکل (۲-الف). (الف) سری زمانی اصلی، (ب) یک دوره تناب‌زدن از سری زمانی، (ج) هیستوگرام شکل (۲-الف)، (د) هیستوگرام شکل (۲-ب).

(Figure-2): The comparison of the original time series with a period of its in the SEM image of the nanoparticles of Figure (1-a).
(a) The original time series, (b) A period of the time series, (c) The histogram of Figure (2-a), (d) The histogram of Figure (2-b)
2- تحلیل سری زمانی تصادف نانومواد و تعیین آماره‌های مناسب جهت طبقه‌بندی نانوساختارها

این اثر و میزان ممکن برای تحلیل و مقایسه سری‌های زمانی وجود دارد که یکی از مهم‌ترین آن‌ها میزان آماری است. به‌طوری‌که ترکیب‌شناخته‌ی مشاهده‌شده در سری زمانی مربوط به تصادف نانوساختارها، آماره‌های مختلفی مورد بررسی قرار گرفت، این آمارها عبارتند از: کمینه، بیشینه، میانگین احراز معیار، دامنه، مد، میانه، کشیدگی، نخست و دوم معیار پرسن، چارک نخست، چارک سوم، فاصله میان چارک و چولگی. از انجایی که این معیارها، آماره‌های مشاهده‌شده‌ی شاهد. از آردن جزئیات محاسبه، آن‌ها صرفاً بررسی می‌شود. به‌همین‌دلیل، تمامی معیارهای پیش‌بینی برای تعداد 65 تصور نانوذرات محاسبه شد که نتایج گسترده‌ای در جدول (1) آورده شد. با توجه به این نتایج، مشاهده می‌شود که از میان آماره‌های محاسبه‌شده، شش آماره عظیم احراز معیار، چولگی، فاصله میان چارک، کشیدگی نخست و دوم معیار پرسن، فاصله چپ یک دقیقه تا چربی از چاپ نشان می‌دهند که در ادامه نتایج پاره‌ای این آمارها با جزئیات بیشتری مورد بررسی قرار می‌گیرند. شامل فاصله میان چارک و (5) و جدول (2) تعدادی از تصادف نانوذرات خوب و مقادیر

<table>
<thead>
<tr>
<th>آماره</th>
<th>تصادف بند</th>
<th>تصادف متوسط</th>
<th>تصادف خوب</th>
<th>کمینه</th>
<th>بیشینه</th>
<th>میانگین</th>
<th>احراز معیار</th>
<th>دامنه</th>
<th>مد</th>
<th>نخست</th>
<th>دوم</th>
<th>چولگی</th>
<th>چارک اول</th>
<th>چارک سوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.96</td>
<td>0.18</td>
<td>1.13</td>
<td>0.2</td>
<td>1.18</td>
<td>0.17</td>
<td>0.13</td>
<td>0.2</td>
<td>0.14</td>
<td>2.45</td>
<td>1.26</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>0.14</td>
<td>254.2</td>
<td>0.12</td>
<td>254</td>
<td>0.13</td>
<td>256</td>
<td>1.23</td>
<td>1.26</td>
<td>0.10</td>
<td>0.1</td>
<td>6.47</td>
<td>110.2</td>
<td>5.37</td>
<td>103.2</td>
<td>101.2</td>
</tr>
<tr>
<td>13.65</td>
<td>625.9</td>
<td>8.61</td>
<td>42.38</td>
<td>7.24</td>
<td>26.12</td>
<td>101.2</td>
<td>101.2</td>
<td>101.2</td>
<td>101</td>
<td>7.52</td>
<td>108.6</td>
<td>8.7</td>
<td>107.08</td>
<td>108.6</td>
</tr>
<tr>
<td>15.9</td>
<td>23.2</td>
<td>20.37</td>
<td>39.1</td>
<td>18.51</td>
<td>34.3</td>
<td>108.6</td>
<td>108.6</td>
<td>108.6</td>
<td>108</td>
<td>15.9</td>
<td>23.2</td>
<td>20.37</td>
<td>39.1</td>
<td>39.1</td>
</tr>
<tr>
<td>0.11</td>
<td>253.3</td>
<td>0.07</td>
<td>252.87</td>
<td>0.08</td>
<td>252.8</td>
<td>101.2</td>
<td>101.2</td>
<td>101.2</td>
<td>101</td>
<td>0.78</td>
<td>-1.132</td>
<td>0.13</td>
<td>-0.59</td>
<td>0.76</td>
</tr>
<tr>
<td>0.24</td>
<td>1.68</td>
<td>0.26</td>
<td>2.31</td>
<td>7.14</td>
<td>1.14</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>21.54</td>
<td>66.37</td>
<td>7.91</td>
<td>38.25</td>
<td>8.58</td>
</tr>
<tr>
<td>0.061</td>
<td>0.14</td>
<td>0.17</td>
<td>0.34</td>
<td>0.935</td>
<td>1.7</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.28</td>
<td>65.8</td>
<td>0.33</td>
<td>65.2</td>
<td>0.25</td>
</tr>
<tr>
<td>0.46</td>
<td>193</td>
<td>0.52</td>
<td>191.6</td>
<td>0.31</td>
<td>191.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>23.71</td>
<td>115.4</td>
<td>10.47</td>
<td>62.87</td>
<td>15.28</td>
</tr>
</tbody>
</table>

(جدول 1): توزیع مختلف برای سری‌های زمانی تصادف نانوساختارها

(Figure 4): مقایسه سری‌های زمانی اصلی با یک دوچرخه نانوذرات تعیین در تصویر SEM نانوذرات شکل (1-الف). (الف) سری زمانی اصلی، (ب) یک دوچرخه نانوذرات تعیین در تصویر SEM نانوذرات شکل (2-الف). (ب) هیستوگرام شکل (3-الف). (د) هیستوگرام شکل (4-الف).
کشیدگی نخست و دوم، فاصله میان‌کارکی، معیار پیرسون و چولگی مربوط می‌شود. با توجه به این نتایج، دیده می‌شود که معیارهای مربوط به تصویری که نانوذرات در آنها به‌صورت یک‌پاپاتن و از نظر تاریکی شاندیده، نسبت به تصویری که دارای نانوذرات به‌هم‌پیوسته و کل‌خزنده است، پراکنده بیشتری دارد. به‌طوری‌که تصویر خوب دارای انحراف معیار کمتری نسبت به تصویر یک‌پاپاتن است. از این‌رو می‌توان گفت که پراکنده و عدم تقارن با نمودار جمع‌یادی مورد ویژه‌سنجی فرآیند SEM انتظار می‌رود که فاصله میان‌کارکی در تصویر نانوذرات نیز متفاوت باشد، به‌طوری‌که طبق نتایج، فاصله میان‌کارکی در تصویر یک‌پاپاتن از تصویر خوب است.

(شکل-5): نمونه‌هایی از تصویر SEM نانوذرات خوب

(Figure-5): The examples of good SEM images of nanoparticles

<table>
<thead>
<tr>
<th>جدول-2: مقادیر معیارها برای تصویر (شکل)</th>
<th>(Table-2): The values of features for images of Figure (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>چولگی (γ)</td>
<td>ضریب پیرسون (PR)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1.728</td>
<td>19.34</td>
</tr>
<tr>
<td>1.555</td>
<td>25.98</td>
</tr>
<tr>
<td>7.403</td>
<td>4.46</td>
</tr>
<tr>
<td>1.922</td>
<td>20.45</td>
</tr>
<tr>
<td>0.147</td>
<td>2.44</td>
</tr>
<tr>
<td>0.228</td>
<td>5.29</td>
</tr>
<tr>
<td>0.335</td>
<td>0.78</td>
</tr>
<tr>
<td>0.018</td>
<td>1.76</td>
</tr>
</tbody>
</table>
(شکل-۶) نمونه‌هایی از تصاویر نانوذرات بدن

(Figure-6): The examples of bad SEM images of nanoparticles

(جدول-۳): مقدار معیارهای تصاویر شکل (۶)

(Table-3): The values of features for images of Figure (6)

<table>
<thead>
<tr>
<th>تصویر (ف)</th>
<th>(PR)</th>
<th>(IQR)</th>
<th>فاصله میان‌قارکی (β۲)</th>
<th>کشیدگی دوم (β۱)</th>
<th>انحراف معیار (κ)</th>
<th>معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.303</td>
<td>41.96</td>
<td>92</td>
<td>1.85</td>
<td>-1.14</td>
<td>51.83</td>
</tr>
<tr>
<td>β</td>
<td>0.214</td>
<td>26.54</td>
<td>133</td>
<td>1.71</td>
<td>-1.295</td>
<td>65.21</td>
</tr>
<tr>
<td>γ</td>
<td>0.078</td>
<td>92.50</td>
<td>121</td>
<td>1.84</td>
<td>-1.155</td>
<td>70.47</td>
</tr>
<tr>
<td>δ</td>
<td>0.173</td>
<td>75.74</td>
<td>103</td>
<td>1.85</td>
<td>-1.149</td>
<td>57.61</td>
</tr>
<tr>
<td>ε</td>
<td>0.037</td>
<td>58.05</td>
<td>111</td>
<td>1.62</td>
<td>-1.378</td>
<td>55.80</td>
</tr>
<tr>
<td>η</td>
<td>0.218</td>
<td>51.74</td>
<td>112</td>
<td>1.58</td>
<td>-1.420</td>
<td>59.20</td>
</tr>
<tr>
<td>ι</td>
<td>0.059</td>
<td>101.64</td>
<td>136</td>
<td>1.62</td>
<td>-1.375</td>
<td>76.69</td>
</tr>
<tr>
<td>κ</td>
<td>0.051</td>
<td>87.27</td>
<td>115</td>
<td>1.92</td>
<td>-1.084</td>
<td>67.87</td>
</tr>
</tbody>
</table>

لازم است که هموگلاین‌هایی معیارها لحاظ شود. در ادامه این مقاله یک سامانه استنتاج فازی طراحی شده است که به‌تواند با بررسی معیارهای مذکور به طبقه‌بندی نانوساختارها پیش‌دارد.

در مورد کشیدگی نیز (β۱) دارایی مقدار مثبت و منفی یا ترتب در تصاویر خوب و بد است. همچنین در تصاویر خوب از تصاویر بد بیشتر است. به‌طور شهودی نیز هر چقدر میزان کلوکی در تصاویر SEM نانوذرات بشری شده‌اند نیز بیشتر و هر چقدر میزان یکنواختی و نظم Nانوذرات بیشتر شود مقدار PR مثبت یا کمتر می‌شود. بدین ترتیب برای تصاویر بد مقدار بیشتری نسبت به تصاویر خوب دارد. از سوی دیگر مشاهده می‌شود که به‌زودی مقدار معیارهای مربوط به تصاویر متغیر با مقدار باعث این می‌شود که تصاویر خوب و بد هموگلاین‌های دارد. لذا نشان می‌دهد قطعی را برای این معیارها در نظر گرفته. نتایج برای طراحی یک سامانه تصمیم‌گیری خودکار برای طبقه‌بندی نانوساختارها

۳- روش پیشنهادی جهت طبقه‌بندی نانوساختارها

همان‌گونه که پیشتر اشاره شد، در این مقاله یک روش جدید برای طبقه‌بندی نانوساختار تصاویر SEM مطابق نمودار جعبه‌ای شکل (۹) ارائه شده است.
(جدول-4): مقادیر معیارها برای تصاویر شکل (7)

(Table-4): The values of features for images of Figure (7)

<table>
<thead>
<tr>
<th>تصویر</th>
<th>انحراف معیار (σ)</th>
<th>کشیدگی اویل (β₁)</th>
<th>کشیدگی دوم (β₂)</th>
<th>فاصله میان قارچی (IQR)</th>
<th>ضرب پیرسی (PR)</th>
<th>چولنگی (τ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>48.23</td>
<td>-0.343</td>
<td>2.66</td>
<td>65</td>
<td>2.48</td>
<td>0.431</td>
</tr>
<tr>
<td>β</td>
<td>28.72</td>
<td>-0.593</td>
<td>2.41</td>
<td>42</td>
<td>7.61</td>
<td>0.104</td>
</tr>
<tr>
<td>γ</td>
<td>38.27</td>
<td>-0.734</td>
<td>2.27</td>
<td>57</td>
<td>1.17</td>
<td>0.119</td>
</tr>
<tr>
<td>δ</td>
<td>43.75</td>
<td>-0.799</td>
<td>2.20</td>
<td>72</td>
<td>3.34</td>
<td>0.386</td>
</tr>
<tr>
<td>ε</td>
<td>43.75</td>
<td>-0.799</td>
<td>2.20</td>
<td>72</td>
<td>3.43</td>
<td>0.386</td>
</tr>
<tr>
<td>η</td>
<td>48.38</td>
<td>0.141</td>
<td>2.11</td>
<td>60</td>
<td>3.92</td>
<td>0.336</td>
</tr>
<tr>
<td>θ</td>
<td>43.98</td>
<td>-0.885</td>
<td>2.11</td>
<td>70</td>
<td>2.03</td>
<td>0.164</td>
</tr>
<tr>
<td>ι</td>
<td>48.11</td>
<td>-0.283</td>
<td>2.72</td>
<td>65</td>
<td>6.76</td>
<td>0.417</td>
</tr>
</tbody>
</table>

1- طراحی سامانه استنتاج فازی جهت تصاویر میکروسکوپی نانوذرات

استنتاج فازی، فرآیندی است که به طوری که نگاشت از ورودی‌ها به خروجی‌ها با استفاده از منطق فازی و تفکر انسانی می‌شود.

با توجه به نگاه اسکام، یک تصمیم‌گیری به این تکنیک تشخیص داده می‌شود [22]. فرمولی استنتاج فازی از یک بخش تشکیل می‌شود که شامل مراحل فازی سازی متغیرهای ورودی، اعمال عملگرهای فازی، اعمال روش داده‌ها، تجربه واردهای خروجی و در نهایت غیرفازی سازی خروجی است. وارد داده‌ها نشان می‌دهد که سامانه استنتاج فازی دریافت ورودی‌ها و تعیین درجه ضعیف آنها به یک یک مجموعه‌های فازی است که این یک کار از طریق توابع هوشی می‌گردد.

با توجه به شکل (9)، مراحل لازم جهت تصویر میکروسکوپی نانوذرات SEM نویسخانه‌ها عبارتند از:

1- اصلاحات ماتریس سبب‌سازی D حاوی اطلاعات

2- اصلاحات ماتریس سبب‌سازی D وابسته (X)

3- استخراج آماره‌های مربوط به سری زمانی X شامل احراز معیار، چولنگی، فاصله میان چارکی و کشیدگی

4- اعمال شب آمارا به سری آماده بردار (Z) به معادن ورودی یک سامانه استنتاج فازی جهت تصویر میکروسکوپی

سال 1396 شماره 2 یپاس 32
پایین (L)، متوسط (M) و بالا (H) تقسیم شده‌اند. پس
از فازی سازی ورودی، درجه درستی هر کی از اجزای
قسمت فرض تعیین می‌شود. جنون قسمت فرض دارای
چنین یک کنش است از عملگر متغیری AND
برای ترکیب درجه درستی بخش‌ها و تولید یک عدد
به‌عنوان درجه درستی قسمت فرض استفاده شده
است. نوشتن قواعد فازی برای همه حالات ممکن
معیارهای ورودی وقت‌گیر و غیرقابل استفاده
می‌گردد که در این حالت از توابع عضویت به به دسته

(Figure-9): The block diagram for classification of nano images
روش دلالت پیاده‌سازی می‌شود. رویکردی در اینجا به‌کار رفته‌است که سطح تابع عضویت و با استفاده از روش کمپیوتر، تابع عضویت خروجی که به دست آید، متوسط و خوب تقسم شده است، در شکل (11) مشاهده می‌شود. در مرحله بعد، تجمع مجموعه‌های فازی ارائه‌دهنده خروجی‌ها به یک گروه با هم در قالب یک مجموعه فازی ترکیبی می‌شود. در این مرحله از سامانه استناد خواهد گرفت، گیرفایر خروجی است. در بررسی یک مجموعه فازی قابلیت عملیات تجمع و خروجی آن به‌کار رفته است. رویکرد مقادیر اولیه و مقادیر پایانی مورد استفاده در این مقاله بوده و برای اولیه، مقادیر پایانی و وجود دارد که در این مقاله جدول (5) آن‌ها مشاهده شده است. به روش مرکز جرم استفاده شده است که در آن، مرکز ناحیه زیرزمینی محاسبه می‌شود.
کلولوگی‌های مشارکت‌دهنده در برخی از مناطق و همچنین مقادیر موجود آن در جدول (۷) که نشان دهنده میزان در محدوده مقادیر بد (انحراف معیار، فاصله میان چپ‌کنگ و معیار پیرسن) و میزان معیار در محدوده مقادیر متوسط (چوگلی، کشی گیسی نخست و دوم) است، می‌تواند در گروه تصاویر بد و هم در گروه تصاویر متوسط قرار گیرد. از این روی، تصاویر متوسط طبقه‌بندی می‌شود که در محدوده‌ای که از این احتمالات برای این نتایج ذکر شده است، با توجه به این نتایج داشته باشد. این نتایج به‌طور کلی با نتایج دیگر مطابقت دارد. در حقیقت، این نتایج نشان‌دهنده این است که طبقه‌بندی می‌تواند به‌طور کلی از دیدگاه علمی و کاربردی ارزشمند باشد.

(جدول-۵): قواعد طبقه‌بندی

<table>
<thead>
<tr>
<th>β2</th>
<th>β1</th>
<th>γ</th>
<th>IQR</th>
<th>PR</th>
<th>S</th>
<th>میزان معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Average</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Good</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>Bad</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Average</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Good</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Bad</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Average</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Good</td>
</tr>
<tr>
<td>H</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Bad</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Bad</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Average</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Good</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>Bad</td>
</tr>
</tbody>
</table>

(جدول-۶): درصد درستی نتایج طبقه‌بندی

<table>
<thead>
<tr>
<th>تکرار کل</th>
<th>تصاویر بد</th>
<th>تصاویر متوسط</th>
<th>متوسط درصد درستی</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>22</td>
<td>20</td>
<td>93.85</td>
</tr>
</tbody>
</table>

(شکل-۱۱): نوایی پژوهی برای خروجی

(Figure-11): The membership functions for outputs
(شکل-۱۲): تصاویر مایکروسکوپی الکترونی روبشی نانوذرات با تشخیص غلت. (الف) تصاویر خوب که متوسط تشخیص داده شده است. (ب) و (ج) تصاویر متوسط که به تشخیص داده شده، (د) تصویر بد که در گروه تصاویر متوسط جای داده شده است.

(Figure-12): The SEM images of nanoparticles with the false diagnosis. (a) A good image that is detected the average image, (b) and (c) Average images that are detected bad images, (d) A bad image that is placed in the group of average images.

(جدول-۷): مقادیر میزان براي تصاویر شکل (۱۲)

(Table-7): The values of features for images of Figure (12)

<table>
<thead>
<tr>
<th>کشیدگی دوم (β₁)</th>
<th>کشیدگی اول (β₂)</th>
<th>فاصله میان قارچی (IQR)</th>
<th>ضرب پیرسی (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲.۳</td>
<td>-۰.۶۹۸</td>
<td>۶۵</td>
<td>۱.۲۸</td>
</tr>
<tr>
<td>۲.۱۱</td>
<td>-۰.۸۹۲</td>
<td>۱۰۰</td>
<td>۲۹</td>
</tr>
<tr>
<td>۲.۵۷</td>
<td>-۰.۴۳۰</td>
<td>۷۶</td>
<td>۴۷</td>
</tr>
<tr>
<td>۴.۸۱</td>
<td>۱.۹۸۴</td>
<td>۵۶</td>
<td>۴۷</td>
</tr>
</tbody>
</table>

ب) ادامه آن روند بررسی برای قسمت‌های دیگر شکل

(۱۲). این نکته دریافته‌شده که کروپرتیون فناوری طراحی‌شده در ساختاری که مقادیر میزان طوری باشند که تصاویر مورد نظر قابل رطوبت‌بندی در دو گروه متفاوت (که یکی از آن قطعاً گروه متوسط است) باشد، گروه متوسط را انتخاب می‌کند که شاید نشان‌دهنده محاطی‌بودن الکترون باشد. البته فاقد ظاهری متفاوت کارشناسان مختلف در طبقه‌بندی تصاویر نانوذرات می‌تواند به‌طور محتاطی‌بودن را توجیه کند.

نتیجه گیری

در این مقاله، روش جدیدی برای تشخیص و طبقه‌بندی تصاویر نانوذرات ارائه شد. با توجه به حالتی که زمانی مربوط به تصاویر نانوذرات خوب دارای انتشار می‌باشد، معیارهای پیشرفت و فاصله میان قارچی که می‌باشد و همجذین این تصاویر دارای چگلگی، کشیدگی نخست و دوم بالا هستند. این، در حالی است که انتشار معیار، معیار پیشرفت و فاصله میان قارچی زیاد و چگلگی کشیدگی نخست و دوم کم از ویژگی‌های سری‌های زمانی مربوط به تصاویر نانوذرات SEM

6- Reference

surface nanostructures using fuzzy logic. Santa Clara University, 2010.

[14] A. A. Al-Mousa, A new systematic and quantitative approach to characterization of\n
نوشین بیگدلی کارشناسی و کارشناس آموزش مهندسی برق خوزستان، دانشگاه شیراز به‌ترین وب‌گاهی های کمترین و کنترل پایین‌ریز می‌کند و در سال ۱۳۸۶ در مقطع دکتری برنده‌کنترل از دانشگاه صنعتی فرّاحالتحصیل شد. این شان هم‌اکنون، دانش‌گرده مهندسی برق-کنترل دانشگاه ایلی‌امام خمینی (ره) تربیت است. زمینه‌های تخصصی وی عبارتند از: داده‌کاوی، استخراج و یازدگی‌ها و آلال‌حل بر سری‌زنمان، پردازش تصاویر و عالی‌الهام، سامانه‌های هوشمند، کنترل
سامانه‌های آشوب‌گونه و کنترل پیش‌بین مدل است.
نشانی رایانه‌ای ایشان عبارت است از:
N.bigdeli@eng.ikiu.ac.ir

حامد جباری کارشناسی و کارشناسی ارشد خود را در رشته مهندسی برق-کنترل به ترتیب از دانشگاه صنعتی شاهرود و دانشگاه بين الملی امام خمینی (ره) قزوین دریافت کرده است. ایشان هم‌اکنون دانشجوی دکترای دانشگاه مهندسی برق-کنترل در دانشگاه بين الملی امام خمینی (ره) قزوین است. زمینه‌های پژوهشی ایشان علاوه بر داده‌کاوی، پردازش تصویر، بهینه‌سازی و الگوریتم‌های هوشمند و تکاملی است.
نشانی رایانه‌ای ایشان عبارت است از:
H_jabbari@edu.ikiu.ac.ir