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Feature extraction based on the more resolution of
the classes using auxiliary classifiers

Hamid Reza Ghaffari*& Atena Jalali Mojahed
Department of Computer Engineering, University of Ferdows, Ferdows, Iran

Abstract

Classification is a machine learning method used to predict a particular sample’s label with the least
error. The present study was conducted using label prediction ability with the help of a classifier to
create a new feature. Today, there are several feature-extraction methods like principal component
analysis (PCA) and independent component analysis (ICA) that are widely used in different fields;
however, they all suffer from the high cost of transferring to another space. The purpose of the proposed
method was to create a higher distinction between various classes using the new feature in a way that,
make the data in the classes closer to each other. As a result, for increasing the efficiency of classifiers,
more differentiation is created between the data of various classes. Firstly, the suggested labels for the
primary data set were determined using one or more classifiers and added to the primary data set as a
new feature. The model was created using a new data set. The new feature for training and testing data
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sets was provided separately. The tests were performed on 20 standard data sets and the results of the
proposed method were compared with those of the two methods described in the related studies. The
outputs indicated that the proposed method has significantly improved the classification accuracy. In
the second part of the tests, the resolution of the new feature was examined according to two criteria,
namely Information Gain and Gini Index, for examining the effectiveness of the proposed method. The
results showed that the feature obtained in the proposed method has higher Information Gain and lower
Gini Index in most cases, as it has less irregularity. To prevent the increase in data dimensions, the
feature with the least Information Gain was replaced with the feature extracted with the most

Information Gain. The results of this step showed an increase in efficiency as well.

Keywords: Feature extraction, classification, information gain, Gini index.
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(Table-1): Specifications of 20 UCI Data Sets
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(Figure-4): Test steps of the proposed CBC model
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(Table-3): Comparison of the support vector classifier classification on the proposed CBC method and other methods by

percentage, on 20 standard datasets and ranking the results (R)
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(Table-4): Comparing the accuracy of the decision tree classifier on the proposed CBC method and other methods as a
percentage, on 20 standard datasets and ranking the results (R)
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(Table-6): Comparison of the accuracy of the nearest neighbor classifier k on the proposed CBC method and other methods
in percentage, on 20 standard datasets and ranking the results (R)

o [T (R[S [ n o Lol b Lo S [mL£8 o] B | W[ [ o
iris % 3| oz | 1] o666 | 3| %% 4| oess |2 6" 4| oses 3| %0 [3]82 5|00

wine | O | 4| 9231 |7 | or0a [4| %% 6| |2| L 5] ez [1] %] % 1| 919

wdbe %65 2| 9165 | 7| 9675 | 2 9:;'4 6| 9658 | 3 9%3 5| 9684 |1 9%7 2 9%3 5 9%4

heart | 70| a| 7750 |5 | 7777 | 4| 704 |6 | 8000 | 3 % 1| 8ues |2 | OLt 2| 387 | TEO

banana | 50 |5 | 8960 |2 | e85 | 5| O03 |7 | goss |1 | B89 | 4| seoo |3 | 889 | 4| B2 )5 886

. bupa | 3 |6 | 6625 | 4| 6234 | 6| %27 |5 | 6754 |3 % 1| 7218 | 2 % 1| %027 |03
gg)” sonar | %% |3 | 6530 | 8| 8281 |3 | 07 |7 8095 |5 % 1| 8115 [a| 808 | 5| 833 ), 828

A 2 Vol Vfee Lo


http://dx.doi.org/10.52547/jsdp.18.2.29
http://jsdp.rcisp.ac.ir/article-1-986-en.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-04 ]

[ DOI: 10.52547/jsdp.18.2.29]

Segmentat | 96. 95.4 97.4 97.2 95.3 96.6
me o | 5| 9482 8] o653 |5 | %5 |6 oees | 4| |1 |oran | 2| T s B3] %

) 73 708 75.0 750 715 74.0
pima | gv 4| 7308 | 5| 7305 | 4| 0% |7 |7ad0 | 2| B |1 | 1500 |1 | B 1| T0 6| 7]
mammogr | 74. 73.0 74.4 74.5 69.1 74.1
e | o | 5| 6298 |8 | a0 5| TG0 Ve |zasr | 1| Tt || mase |2 T 2| Y 7] Ty
ionospher | 88. 89.4 92.4 91.1 91.8 87.9

s 3 |8 8076 5| 8833 |8 | %0 |6 ee0s | 7| B2 1| e07a 4| 5t s %0 2] 0]
o7, 99.2 996 99.5 97.0 97.2
cod | 3 | 6| %804 |5 | 9736 [6| %7 (3| oar7 |4 | B |1 cese |2 | B |2 | U0 e %
hayes_rot | 77. 84.1 85.2 85.2 82.3 74.6
. Lo | 7| 6508 o] 7754 | 7| %3 |3 | e2ne 6| 222 |1 | ss0s |2 | 222 1| %35 | 7]
page- | o7, 98.2 98.2 98.2 974 97.8
pags | o 5| oa6t 8| 974 | 5| 0% |3 o822 | 4| %% 2| os2s |1 | B2 a4 A7 |
[ 95, %95 99.3 99.4 953 95.7
tyroid | 5% | 9 | 9537 | 7 | 9573 6| B2 | 1| o740 |5 | %3 3] eer0 || N2 (%% e] %

[ 86, 834 89.0 89.0 858 86.7
magic | 55 3| 8149 7| 8670 |3 | %0% |6 |se0s | 4| B |1 | 000 |2 | 02| %F 5| O
monk2 | 2o | 3| o721 |2 | 9559 [3| 200 |1 | 9721 | 2| 200 [1| 200 |1| 200 |1 | %% |5 | %04

) 64, 835 93.0 93.7 972 64.2
ring %6 | 0| sae0 5| eato | 0| %% |7 6sa0 | 6| 50| 4| oaes 3| BT |2 | B2 1| O
9. 80.0 9.8 904 96.2 9.3
twonorm | 9 | 2| 6280 | 8 | 9630 | 2 | %30 | 7 [ se20 |6 | % 3| o525 |4 | Nt 5| B2 g | %
Wall_Foll
owing
Robot | 2% | 7| 7986 | 9| 8987 [ 7| B4 | 2| 9367 |5 | 82| 1| o700 | 4| B4 | 3|80 |g]| 89
bot | g7 9 7 4 7 2
Navigatio -
n Data

ot (59 32 0 yd & B shg )y y1lw 9 CBC (golpdudny gy 31 oyl 510 5 cyaiile wig00 3 Cutmuo gy L (paiilao :(V - Jgui2r)
T (gaudldy g 9 lailiwl soldac goxo

(Table-7): Mean Results of Support Vector Machine Classification Accuracy on CBC Proposed Method and Other Methods in
Percentage, on 20 Standard Datasets and Results Ranking
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(Table-8): Mean Results of Decision Tree Classifier Accuracy Based on Proposed CBC Method and Other Methods Percent, on 20
Standard Datasets and Results Ranking

RIEIE o 0
wvgy el Base CBCsvm CBCknn CBCtree | CBCskt | CBCrf | CBCsktr CBCstr CANN | TANN
(%) A90d y e 87.05 82.82 87.84 87.05 88.69 | 90.83 86.62 90.83 86.65 87.60
» M)u‘&h 5 5 4 4 3 2 3 2 5 4
o¥9)
ad, 7 10 4 6 3 1 9 2 8 5

00154 gosxo Comn (59 3 w0 yd & b g, wlw g CBC golpsdiin (g o Polai Ko wuos ) oo ol (il :(A- Jguz)
@S gauad; g o laitiwl

(Table-9): Mean results of random forest classification accuracy on the proposed CBC method and other methods in percentage,
on 20 standard datasets and ranking results
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(Table-12): Mean information gain on the Iris dataset
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:" (Table-10): Mean results of the nearest neighbor classifier k class on the proposed CBC method and other methods to percentage,

X on 20 standard datasets and ranking results
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2 (Table-11): Final conclusion for selecting the best CBC method and auxiliary classifier
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Hayes-roth
(Table-14): Mean information gain on Hayes-roth dataset
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(Table-15): Mean Gini index on Hayes-roth dataset
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(Table-13): Mean Gini index on Iris data set
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