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A new ensemble clustering method based on fuzzy cmeans
clustering while maintaining diversity in ensemble
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Abstract

An ensemble clustering has been considered as one of the research approaches in data mining, pattern
recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination
first produces several bases clustering, and then, for their aggregation, a function is used to create a final
cluster that is as similar as possible to all the cluster bundles. The input of this function is all base clusters
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and its output is a clustering called clustering agreement. This function is called an agreement function.
Ensemble clustering has been proposed to increase efficiency, strong, reliability and clustering stability.
Because of the lack of cluster monitoring, and the inadequacy of general-purpose base clustering algorithms
on the other, a new approach called an ensemble clustering has been proposed in which it has been
attempted to find an agreed cluster with the highest Consensus and agreement. In fact, ensemble clustering
techniques with this slogan, the combination of several poorer models, is better than a strong model.
However, this claim is correct if certain conditions (such as the diversity between the members in the
consensus and their quality) are met. This article presents an ensemble clustering method. This paper uses
the weak clustering method of fuzzy cmeans as a base cluster. Also, by adopting some measures, the
diversity of consensus has increased. The proposed hybrid clustering method has the benefits of the
clustering algorithm of fuzzy cmeans that has its speed, as well as the major weaknesses of the inability to
detect non-spherical and non-uniform clusters. In the experimental results, we have tested the proposed
ensemble clustering algorithm with different, up-to-date and robust clustering algorithms on the different
data sets. Experimental results indicate the superiority of the proposed ensemble clustering method
compared to other clustering algorithms to up-to-date and strong.

Keywords: Ensemble Learning, Ensemble Clustering, Fuzzy Cmeans Clustering Algorithm, Data Validity.
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The algorithm for generating a diverse clustering ensemble

Input: X,B,c
Output: 1

01.11 = @;

02.y =randx 0.5;
03. Fori=1to B

04. n = |X|;

05. ¢;=rand([c, ..., min(vX, 100)));
06. [m;, c;]=BaseClustering(X, ¢;, y);
07. N=nu{m};

08. EndFor

09. Return 11

b pime oo glaguivabips il (sl adgi wSad :(0-Jsb)
(Figure-1): A pseudocode of consensus production of local clustering - valid base

The base clustering algorithm

Input: X,c,y
Output: m, ¢
0l.m=@;

02. TempX = @;
03. counter = 0;
04.CN = 0;
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05. While ((|IX| — [TempX|) = c?)

06. [N+, ., TN *C¢]=modifiedfuzzycmeans(X, c, y, TempX);
07. CN =CN +c;

08. Fork=1toc

09. If(ln.counterxc+k| < C)

10. meounterxctk — ¢ counter = counter + 1;
11. EndIf

12. TempX = TempX U meounterxctk,

13. EndFor

14. EndWhile

15. ¢ = CN — counter,

16. Remove all empty clusters from m;
17. Return m, c;

Wl o Ao (gaiualgs S audgi v 5ol uS Al (Y- JSb)

(Figure-2): Pseudo-code algorithm for producing a valid local-clustering base

The modified fuzzy c-means clustering algorithm

Input: X, c, y, RDI % Removed Data Index
Output: [rp1,752, w0, el

01.vi €{1,2,...,c}: ' = @;

02. counter=0;

03.Y = 0;

04. Temp = {1, ..., |X|} — RDI;

05. For each j in Temp

06. counter = counter + 1; Ycounter = Xj;
07. If (counter < c)

08. Ceounter = Ycounters

09. EndFor

10. For j=1 to MaxlIteration
11. For p=1 to |X]|

12. Fork=1toc

13. disgp = |x; — Cil;

14. DIRkp _ {1 dlskp < y,
0 0. W.

15. If (p € RDI) DIRyy, = —DIRyp;

16. EndFor

17. ADIRy, = ¥5_1|DIRp|;

18. clny=arg ker{l}}.r}'c} disyp;

19. If ((ADIR, > 1D&(p & RDI))

20. Forp=1toc

21. DIRyp, = —DIRyp;

22. DIRycin, = 1;

23 EndIf

24 EndFor

25. For k=1toc

ofef,.)

26. AC = ADIRL 5
27. EndFor

28. C=CH+AC;

29. EndFor

30. For p=1 to | X]|

31. For k=1toc

32. If (DIRyp == 1)

33. T =T U {p};
34, EndIf

35. EndFor

36. EndFor

37. Return [‘r‘n1,1"nz, ) T'T[C]

Bl > gps cmeans (o318 gutualigs o 5o A Al (Y- )
(Figure-3): Pseudo-coding of fuzzy clustering algorithms improved cmeans
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(Figure-4): (a) A dataset and true cluster labels (high). (B) The result of the fuzzy cmeans clustering algorithm (bottom).
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(Figure-5): The result of applying the fuzzy cmeans clustering algorithm improved on the data set in Figure 4. (Note ¢ = 2).
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(Figure-10): Different classical methods of ¢

position on four combined or synthetic data sets
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(Figure-11): Different combinations of classical methods on four synthetic or combined data sets
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(Figure-12): Comparison with Strong Clustering Algorithms
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(Table-6): The result of KMCE statistical test against other
methods on the Breast data set
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(Table-3): Effect of number of data on computational cost of
proposed hybrid clustering algorithm
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(Table-4): The result of KMCE statistical test against other
methods on the Iris data set
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(Table-5): The result of KMCE statistical test against other
methods on the Wine data set
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