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Online Streaming Feature Selection Using Geometric Series
of the Adjacency Matrix of Features

Sadegh Eskandari
Department of Computer Science, Faculty of Mathematical Sciences,
University of Guilan, Rasht, Iran

Abstract

Feature Selection (F'S) is an important pre-processing step in machine learning and data mining. All the
traditional feature selection methods assume that the entire feature space is available from the beginning.
However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the
number of training examples is fixed while the number of features grows with time as new features stream
in. For instance, in the problem of semantic segmentation of images using texture-based features, the
number of features can be infinitely growing.

Tn these dynamically growing scenarios, a rudimentary approach is waiting a long time for all features
to become available and then carry out the feature selection methods. However, due to the importance of
optimal decisions at every time step, a more rational approach is to design an online streaming feature
selection (OSFS) method which selects a best feature subset from so-far-seen information and updates the
subset on the fly when new features stream in. Any OSFS method must satisfy three critical conditions; first,
it should not require any domain knowledge about feature space, because the full feature space is unknown
or inaccessible. Second, it should allow efficient incremental updates in selected features. Third, it should be
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as accurate as possible at each time instance to allow having reliable classification and learning tasks at that
time instance.

In this paper, OSFS is considered from the geometric series of features adjacency matrix and, a new
OSFS algorithm called OSFS-GS is proposed. This algorithm ranks features based on path integrals and the
centrality concept on an online feature adjacency graph. The most appealing characteristics of the proposed
algorithm are; 1) all possible subsets of features are considered in evaluating the rank of a given feature, 2)
it is extremely efficient, as it converts the feature ranking problem to simply calculating the geometric series
of an adjacency matrix and 3) beside selected features subset, it uses a redundant features subset that
provides the reconsideration of good features at different time instances.

This algorithm is compared with three state-of-the-art OSFS algorithms, namely information-investing,
fast-OSFS and OSFSMI. The information-investing algorithm is an embedded online feature selection
method that considers the feature selection as a part of learning process. This algorithm selects a new
incoming feature if it reduces the model entropy more than the cost of the feature coding. The fast-OSFS
algorithm is a filter method that gradually gencrates a Markov-blanket of feature space using causality-
based measures. For any new incoming feature, this algorithm executes two processes: an online relevance
analysis and then an online redundancy analysis. OSFSMI is a similar algorithm to fast-OSFS, in which uses
information theory for feature analysis.

The algorithms are extensively evaluated on eight high-dimensional datasets in terms of compactness,
classification accuracy and run-time. In order to provide OSF scenario, features are considered one by one.
Morcover, in order to strengthen the comparison, the results arc averaged over 30 random strecaming
orders. Experimental results demonstrate that OSFS-GS algorithm achieves better accuracies than the three
existing OSFS algorithms.

Keywords: Streaming Features, Feature Selection, Geometric Series.
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(Table-3): The cffect(s) of parameter K on the classification
accuracy of SVM at different time instances
on madelon dataset
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(Table-4): Average sizes of the selected subsets for 30 different
streaming orders using alpha-investing, fast-OSFS, OSFSMI
and OSFS-GS. In this table, t indicates the result of the

hypothesis test defined in eq (9). In the tests, A is OSFS-GS and
B is one of the other algorithms.
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(Figure-1): The average classification accuracy at different
time instances using alpha-investing, fast-OSFS, OSFSMI and
OSES-GS on dorothea
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(Figure-7): The average classification accuracy at different
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