دوره 17، شماره 2 - ( 6-1399 )                   جلد 17 شماره 2 صفحات 59-70 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (2584 مشاهده)
بیماری فیبروز کیستیک(‏CF‏ یا ‏Cystic fibrosis‏) شایع‌ترین ‏اختلال چند‌سیستمی است که علت اصلی مرگ و میر ناشی از این بیماری مربوط به ‏عفونت مزمن ریوی و عوارض آن ‏است. حدود60-75% بیماران ‏CF‏ به‌صورت مداوم دچار عفونت ‏سودوموناس می‌شوند؛ لذا بیماران ‏CF‏ باید پیوسته تحت مراقبت پزشک ‏باشند تا در‌صورت بروز عفونت به‌سرعت نسبت به درمان آن ‏اقدام شود. اگر چه کشت خلط یا حلق روش استاندارد تشخیص ‏عفونت است، ولی به‌دست‌آوردن نتیجه آن، زمان‌بر بوده و ‏روشی که وجود عفونت را سریع‌تر تشخیص دهد، باعث ‏سهولت در امر تشخیص و شروع درمان با آنتی‌بیوتیک ‏می‌شود. این مطالعه با هدف استفاده از صدای تنفس بیماران ‏CF‏ برای تشخیص وجود عفونت  و موفقیت درمان انجام شد. به این منظور، تقارن اطلاعات سیگنال صدای ریه ‏راست و چپ در بیماران ‏CF‏ در حالت بدون عفونت، دارای عفونت ‏سودوموناس و نیز پس ‏از ‏درمان عفونت سودوموناس بررسی ‏شد. ابتدا صدای تنفس 34 بیمار CF ثبت و پس از انجام پیش پردازش‌های لازم، 15ویژگی از آنها استخراج و با روش الگوریتم ژنتیک بهترین دسته ویژگی از ویژگی‌‌های به‌دست‌آمده استخراج و با روش کنار‌گذاشتن یک شرکت‌کننده به سه طبقه‌بند ماشین بردار پشتیبان، K نزدیک‌ترین همسایگی و بیزین داده شد. همچنین روش ترکیب سه طبقه‌بند نیز بررسی شد. بهترین نتایج توسط روش ترکیب طبقه‌بندها به‌دست آمد که وجود عفونت با صحت %3/91 و موفقیت درمان با صحت %9/90 تشخیص ‏داده شدند. ‏در این مطالعه برای نخستین‌بار از صدای تنفس بیماران CF برای تشخیص عفونت استفاده شده است. روش پیشنهادی، آسان و در دسترس بوده و می‌تواند در شروع به درمان سریع و پیگیری روند درمان به پزشکان کمک کند.
متن کامل [PDF 3356 kb]   (877 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات گروه علائم حیاتی ( مرتبط با مهندسی پزشکی)
دریافت: 1397/6/11 | پذیرش: 1398/2/17 | انتشار: 1399/6/24 | انتشار الکترونیک: 1399/6/24

فهرست منابع
1. [1] M. A. Koda-Kimble, Koda-Kimble and Young's applied therapeutics: the clinical use of drugs: Lippincott Williams & Wilkins, 2012.
2. [2] M. modaresi, J. faghihinia, and F baharzadeh, "Cystic Fibrosis Prevalence among a Group of High-Risk Iranian Children ," Journal of Isfahan Medical School, vol. 30, 2012.
3. [3] N. Pillarisetti, E. Williamson, B. Linnane, B. Skoric, C. F. Robertson, P. Robinson, J. Massie, G. L. Hall, P. Sly, and S. Stick, "Infection, inflammation, and lung function decline in infants with cystic fibrosis," American journal of respiratory and critical care medicine, vol. 184, pp. 75-81, 2011. [DOI:10.1164/rccm.201011-1892OC] [PMID]
4. [4] H. G. Ahlgren, A. Benedetti, J. S. Landry, J. Bernier, E. Matouk, D. Radzioch, L. C. Lands, S. Rousseau, and D. Nguyen, "Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients," BMC pulmonary medicine, vol. 15, pp. 67, 2015. [DOI:10.1186/s12890-015-0062-7] [PMID] [PMCID]
5. [5] Z. Li, M. R. Kosorok, P. M. Farrell, A. Laxova, S. E. West, C. G. Green, J. Collins, M. J. Rock, and M. L. Splaingard, "Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis," Jama, vol. 293, pp. 581-588, 2005. [DOI:10.1001/jama.293.5.581] [PMID]
6. [6] K. M. Langan, T. Kotsimbos, and A. Y. Peleg, "Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis," Current opinion in infectious diseases, vol. 28, pp. 547-556, 2015. [DOI:10.1097/QCO.0000000000000217] [PMID]
7. [7] P. J. Mogayzel Jr, E. T. Naureckas, K. A. Robinson, C. Brady, M. Guill, T. Lahiri, L. Lubsch, J. Matsui, C. M. Oermann, and F. Ratjen, "Cystic Fibrosis Foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection," Annals of the American Thoracic Society, vol. 11, pp. 1640-1650, 2014. [DOI:10.1513/AnnalsATS.201404-166OC] [PMID]
8. [8] A. R. Smyth, S. C. Bell, S. Bojcin, M. Bryon, A. Duff, P. Flume, N. Kashirskaya, A. Munck, F. Ratjen, and S. J. Schwarzenberg, "European cystic fibrosis society standards of care: best practice guidelines," Journal of cystic fibrosis, vol. 13, pp. S23-S42, 2014. [DOI:10.1016/j.jcf.2014.03.010] [PMID]
9. [9] S. Ferrari, M. Silva, M. Guarino, J. M. Aerts, and D. Berckmans, "Cough sound analysis to identify respiratory infection in pigs," Computers and Electronics in Agriculture, vol. 64, pp. 318-325, 2008. [DOI:10.1016/j.compag.2008.07.003]
10. [10] A. Oliveira, C. Pinho, J. Dinis, D. Oliveira, and A. Marques, "Automatic Wheeze Detection and Lung Function Evaluation-A Preliminary Study," in HEALTHINF, 2013, pp. 323-326.
11. [11] J. Niu, Y. Shi, M. Cai, Z. Cao, D. Wang, Z. Zhang, and X. D. Zhang, "Detection of sputum by interpreting the time-frequency distribution of respiratory sound signal using image processing techniques," Bioinformatics, vol. 34, pp. 820-827, 2017. [DOI:10.1093/bioinformatics/btx652] [PMID] [PMCID]
12. [12] J. Niu, Y. Shi, D. Shen, Y. Wang, W. Xu, M. Cai, and Y. Li, "The Identification of Sputum Situation Based on the Sound from the Respiratory Tract," in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 1166-1171. [DOI:10.1109/AIM.2018.8452413] [PMID] [PMCID]
13. [13] Y. Shi, G. Wang, J. Niu, Q. Zhang, M. Cai, B. Sun, D. Wang, M. Xue, and X. D. Zhang, "Classification of sputum sounds using artificial neural network and wavelet transform," Int. J. Biol. Sci, 2018. [DOI:10.7150/ijbs.23855] [PMID] [PMCID]
14. [14] W. L. Wilkins, "Auscultation skills: breath and heart sounds," Auscultation Skills: Breath and Heart Sounds, pp. 156-157, 2009.
15. [15] R. Dosani and S. Kraman, "Lung sound intensity variability in normal men: a contour phonopneumographic study," Chest, vol. 83, pp. 628-631, 1983. [DOI:10.1378/chest.83.4.628] [PMID]
16. [16] H. Pasterkamp, S. Patel, and G. Wodicka, "Asymmetry of respiratory sounds and thoracic transmission," Medical and Biological Engi-neering and Computing, vol. 35, pp. 103-106, 1997. [DOI:10.1007/BF02534138] [PMID]
17. [17] Z. K. Moussavi, M. T. Leopando, H. Pasterkamp, and G. Rempel, "Computerised acoustical respiratory phase detection without airflow measurement," Medical and Biological Engineering and Computing, vol. 38, pp. 198-203, 2000. [DOI:10.1007/BF02344776] [PMID]
18. [18] R. P. Dellinger, J. E. Parrillo, A. Kushnir, M. Rossi, and I. Kushnir, "Dynamic visualization of lung sounds with a vibration response device: a case series," Respiration, vol. 75, pp. 60-72, 2008. [DOI:10.1159/000103558] [PMID]
19. [19] A. Torres-Jimenez, S. Charleston-Villalobos, R. Gonzalez-Camarena, G. Chi-Lem, and T. Aljama-Corrales, "Asymmetry in lung sound intensities detected by respiratory acoustic thoracic imaging (RATHI) and clinical pulmonary auscultation," in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 2008, pp. 4797-4800. [DOI:10.1109/IEMBS.2008.4650286] [PMID]
20. [20] J. Gnitecki and Z. M. Moussavi, "Separating heart sounds from lung sounds," IEEE Engineering in medicine and biology magazine, vol. 26, pp. 20, 2007. [DOI:10.1109/MEMB.2007.289118] [PMID]
21. [21] D. S. Morillo, S. A. Moreno, M. Á. F. Granero, and A. L. Jiménez, "Computerized analysis of respiratory sounds during COPD exacerbations," Computers in biology and medicine, vol. 43, pp. 914-921, 2013. [DOI:10.1016/j.compbiomed.2013.03.011] [PMID]
22. [22] M. Tenhunen, E. Rauhala, E. Huupponen, A. Saastamoinen, A. Kulkas, and S. Himanen, "High frequency components of tracheal sound are emphasized during prolonged flow limitation," Physiological measurement, vol. 30, pp. 467, 2009. [DOI:10.1088/0967-3334/30/5/004] [PMID]
23. [23] S. Charleston-Villalobos, L. Albuerne-Sanchez, R. Gonzalez-Camarena, M. Mejia-Avila, G. Carrillo-Rodriguez, and T. Aljama-Corrales, "Linear and nonlinear analysis of base lung sound in extrinsic allergic alveolitis patients in comparison to healthy subjects," Methods of information in medicine, vol. 52, pp. 266-276, 2013. [DOI:10.3414/ME12-01-0037] [PMID]
24. [24] V. Rocha, C. Melo, and A. Marques, "Computerized respiratory sound analysis in people with dementia: a first-step towards diagnosis and monitoring of respiratory conditions," Physiological measurement, vol. 37, pp. 2079, 2016. [DOI:10.1088/0967-3334/37/11/2079] [PMID]
25. [25] R. Naves, B. H. Barbosa, and D. D. Ferreira, "Classification of lung sounds using higher-order statistics: A divide-and-conquer approach," Computer methods and programs in biomedicine, vol. 129, pp. 12-20, 2016. [DOI:10.1016/j.cmpb.2016.02.013] [PMID]
26. [26] O. Kramer, Genetic algorithm essentials vol. 679: Springer, 2017. [DOI:10.1007/978-3-319-52156-5]
27. [27] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, and S. Y. Philip, "Top 10 algorithms in data mining," Knowledge and information systems, vol. 14, pp. 1-37, 2008. [DOI:10.1007/s10115-007-0114-2]
28. [28] مسعود رهبری پور، بابک محمد زاده اصل، "تشخیص آریتمی انقباضات زودرس بطنی در سیگنال الکتریکی قلب با استفاده از ترکیب طبقه‌بندها"، پردازش علائم و داده‌ها، سال 1397، شماره 1 پیاپی 35
29. [28] M. Rahbaripour and B. M. Asl, "Premature Ventricular Contraction Arrythmia Detection in ECG Signals via Combined Classifiers," Signal and Data Processing, vol. 1, 2018. [DOI:10.29252/jsdp.15.1.55]
30. [29] L. I. Kuncheva, J. C. Bezdek, and R. P. Duin, "Decision templates for multiple classifier fusion: an experimental comparison," Pattern recognition, vol. 34, pp. 299-314, 2001. [DOI:10.1016/S0031-3203(99)00223-X]
31. [30] A. Bohadana, G. Izbicki, and S. S. Kraman, "Fundamentals of lung auscultation," New England Journal of Medicine, vol. 370, pp. 744-751, 2014. [DOI:10.1056/NEJMra1302901] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.