دوره 17، شماره 1 - ( 4-1399 )                   جلد 17 شماره 1 صفحات 47-60 | برگشت به فهرست نسخه ها

DOI: 10.29252/jsdp.17.1.47


XML English Abstract Print


دانشگاه آزاد اسلامی، واحد شیراز
چکیده:   (551 مشاهده)
توجه به سلامت سالمندان به‌عنوان سرمایه‌های ارزشمند کشور، امری ضروری و شایان توجه است. آسیبهای جدی یا حتی مرگ ناشی از زمین‌خوردن برای افراد سالمند بسیار محتمل است؛ بنابراین تشخیص سریع وقوع این رخداد در بسیاری موارد میتواند منجر به نجات جان شخص شود. در این مقاله روشی پیشنهاد شده است که بر اساس آن تصاویر ویدئویی نظارتی از محل حضور شخص همواره مورد پردازش قرار میگیرد. در ادامه، با استفاده از الگوریتم استخراج پسزمینه بصری (ViBe)، شخص متحرک از پسزمینه جدا شده و شش ویژگی مؤثر از تصویر استخراج می‌شود. در انتها سامانه منطق فازی نوع دو برای تشخیص سقوط فرد به کار گرفته می شود؛ همچنین به‌منظور کاهش پیچیدگی محاسباتی سامانه فازی، از الگوریتم بهینه سازی اجتماع ذرات چندهدفه برای انتخاب توابع تعلق مؤثر استفاده شده است. نتایج اعمال روش پیشنهادی تصدیق می‌کند که این سامانه قادر به تشخیص سقوط شخص با سرعت قابل قبول و دقت تصمیم‌گیری مناسب است.
متن کامل [PDF 5877 kb]   (190 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مقالات پردازش تصویر
دریافت: 1397/5/23 | پذیرش: 1398/6/11 | انتشار: 1399/4/1 | انتشار الکترونیک: 1399/4/1

فهرست منابع
1. [1] Y. S. Delahoz and M. A. Labrador, "Survey on fall detection and fall prevention using wearable and external sensors," Sensors, vol. 14, pp. 19806-19842, 2014. [DOI:10.3390/s141019806] [PMID] [PMCID]
2. [2] S. Kulkarni and M. Basu, "A review on wearable tri-axial accelerometer based fall detectors," J. Biomed. Eng. Technol, vol. 1, pp. 36-39, 2013.
3. [3] K. Yang, C. R. Ahn, M. C. Vuran, and S. S. Aria, "Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit," Automation in Construction, vol. 68, pp. 194, 2016. [DOI:10.1016/j.autcon.2016.04.007]
4. [4] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, "A high reliability wearable device for elderly fall detection," IEEE Sensors Journal, vol. 15, pp. 4544-4553, 2015. [DOI:10.1109/JSEN.2015.2423562]
5. [5] H. Al-Nashash, S. Khan, S. Naqvi, R. Zaheen, A. Al-Ali, and A. Al Nabulsi, "IoT based multi-sensor patient fall detection system," Healthcare Technology Letters, 2019.
6. [6] N. Lapierre, N. Neubauer, A. Miguel-Cruz, A.R. Rincon, L. Liu, and J. Rousseau, "The state of knowledge on technologies and their use for fall detection: A scoping review," International journal of medical informatics, vol.111, pp. 58-71, 2018. [DOI:10.1016/j.ijmedinf.2017.12.015] [PMID]
7. [7] H. Rimminen, J. Lindström, M. Linnavuo, and R. Sepponen, "Detection of falls among the elderly by a floor sensor using the electric near field," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 1475-1476, 2010. [DOI:10.1109/TITB.2010.2051956] [PMID]
8. [8] Y. Zigel, D. Litvak, and I. Gannot, "A method for automatic fall detection of elderly people using floor vibrations and sound-Proof of concept on human mimicking doll falls," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 2858-2867, 2009. [DOI:10.1109/TBME.2009.2030171] [PMID]
9. [9] M. Mubashir, L. Shao, and L. Seed, "A survey on fall detection: Principles and approaches," Neurocomputing, vol. 100, pp. 144-152, 2013. [DOI:10.1016/j.neucom.2011.09.037]
10. [10] X. Ma, H. Wang, B. Xue, M. Zhou, B. Ji, and Y. Li, "Depth-based human fall detection via shape features and improved extreme learning machine," IEEE J. Biomedical and Health Informatics, vol. 18, pp. 1915-1922, 2014. [DOI:10.1109/JBHI.2014.2304357] [PMID]
11. [11] D. H. Hung and H. Saito, "Fall detection with two cameras based on occupied area," in Proc. of 18th Japan-Korea Joint Workshop on Frontier in Computer Vision, 2012, pp. 33-39.
12. [12] Y. Yun and I. Y. H. Gu, "Human fall detection in videos via boosting and fusing statistical features of appearance, shape and motion dynamics on Riemannian manifolds with applications to assisted living," Computer Vision and Image Understanding, vol. 148, pp. 111-122, 2016. [DOI:10.1016/j.cviu.2015.12.002]
13. [13] N. Lu, Y. Wu, L. Feng, and J. Song, "Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data," IEEE journal of biomedical and health informatics, vol. 23, no. 1, pp. 314-323, 2018. [DOI:10.1109/JBHI.2018.2808281] [PMID]
14. [14] A. Shojaei-Hashemi, P. Nasiopoulos, J.J. Little, and M.T. Pourazad, "Video-based human fall detection in smart homes using deep learning," IEEE International Symposium on Circuits and Systems, pp. 1-5, 2018. [DOI:10.1109/ISCAS.2018.8351648]
15. [15] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, et al., "A system for video surveillance and monitoring," VSAM final report, pp. 1-68, 2000.
16. [16] E. Auvinet, F. Multon, A. Saint-Arnaud, J. Rousseau, and J. Meunier, "Fall detection with multiple cameras: An occlusion-resistant me-thod based on 3-d silhouette vertical distri-bution," IEEE transactions on information technology in biomedicine, vol. 15, pp. 290-300, 2011. [DOI:10.1109/TITB.2010.2087385] [PMID]
17. [17] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, "Robust video surveillance for fall detection based on human shape deformation," IEEE Transactions on circuits and systems for video Technology, vol. 21, pp. 611-622, 2011. [DOI:10.1109/TCSVT.2011.2129370]
18. [18] T. Zhang, J. Wang, L. Xu, and P. Liu, "Fall detection by wearable sensor and one-class SVM algorithm," in Intelligent computing in signal processing and pattern recognition, ed: Springer, 2006, pp. 858-863. [DOI:10.1007/978-3-540-37258-5_104]
19. [19] M. Yu, S. M. Naqvi, A. Rhuma, and J. Chambers, "Fall detection in a smart room by using a fuzzy one class support vector machine and imperfect training data," in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, 2011, pp. 1833-1836. [DOI:10.1109/ICASSP.2011.5946861] [PMID]
20. [20] M. Yu, S. M. Naqvi, A. Rhuma, and J. Chambers, "One class boundary method classifiers for application in a video-based fall detection system," IET computer vision, vol. 6, pp. 90-100, 2012. [DOI:10.1049/iet-cvi.2011.0046]
21. [21] J.-L. Chua, Y. C. Chang, and W. K. Lim, "A simple vision-based fall detection technique for indoor video surveillance," Signal, Image and Video Processing, vol. 9, pp. 623-633, 2015. [DOI:10.1007/s11760-013-0493-7]
22. [22] K. Rezaee and J. Haddadnia, "Design of fall detection system: a dynamic pattern approach with fuzzy logic and motion estimation," Information Systems & Telecommunication, pp. 181, 2014.
23. [23] J. M. Mendel and R. B. John, "Type-2 fuzzy sets made simple," IEEE Transactions on fuzzy systems, vol. 10, pp. 117-127, 2002. [DOI:10.1109/91.995115]
24. [24] AForge.NET computer vision, artificial inte-lligence, robotics. Available: http://www.afor-genet.com/.
25. [25] O. Barnich and M. Van Droogenbroeck, "ViBe: A universal background subtraction algorithm for video sequences," IEEE Transactions on Image processing, vol. 20, pp. 1709-1724, 2011. [DOI:10.1109/TIP.2010.2101613] [PMID]
26. [26] K. Ito, "Gaussian filter for nonlinear filtering problems," in Decision and Control, 2000. Proceedings of the 39th IEEE Conference on, 2000, pp. 1218-1223.
27. [27] C.-C. Han and K.-C. Fan, "A greedy and branch and bound searching algorithm for finding the optimal morphological erosion filter on binary images," IEEE Signal Processing Letters, vol. 1, pp. 41-44, 1994. [DOI:10.1109/97.300314]
28. [28] E. R. Dougherty, "An Introduction to Morphological Image Processing (Tutorial Texts in Optical Engineering," DC O'Shea, SPIE Optical Engineering Press, Bellingham, WA, USA, 1992.
29. [29] B. Patel and N. Patel, "Motion detection based on multi frame video under surveillance system," International Journal of Computer Science and Network Security (IJCSNS), vol. 12, pp. 100, 2012.
30. [30] G. Diraco, A. Leone, and P. Siciliano, "An active vision system for fall detection and posture recognition in elderly healthcare," in Proceedings of the conference on design, automation and test in Europe, 2010, pp. 1536-1541. [DOI:10.1109/DATE.2010.5457055]
31. [31] M. A. R. Ahad, Motion history images for action recognition and understanding: Springer Science & Business Media, 2012. [DOI:10.1007/978-1-4471-4730-5]
32. [32] G. Debard, P. Karsmakers, M. Deschodt, E. Vlaeyen, J. Van den Bergh, E. Dejaeger, et al., "Camera based fall detection using multiple features validated with real life video," in Workshop Proceedings of the 7th International Conference on Intelligent Environments, 2011, pp. 441-450.
33. [33] C. Wagner and H. Hagras, "Toward general type-2 fuzzy logic systems based on zSlices," IEEE Transactions on Fuzzy Systems, vol. 18, pp. 637-660, 2010. [DOI:10.1109/TFUZZ.2010.2045386]
34. ]34[ خدادای الناز ، حسینی راحیل، مزینانی مهدی،" ارائه‌ مدل‌های محاسبات نرم مبتنی بر فازی، تکاملی و هوش جمعی در تحلیل تصاویر ماموگرافی جهت تشخیص تومور‌های سینه"، فصل نامه پردازش علائم و داده ها، دوره 16، شماره 2، صفحات ۱65-۱47، 1398.
35. [34] Khodadadi E, Hosseini R, Mazinani M. Soft Computing Methods based on Fuzzy, "Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors", Journal and Data Processing, vol. 16, no.2, pp. 147-165, 2016. [DOI:10.29252/jsdp.16.2.147]
36. [35] M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space," IEEE transactions on Evolutionary Computation, vol. 6, pp. 58-73, 2002. [DOI:10.1109/4235.985692]
37. [36] V. Pareto, Cours d'économie politique vol. 1: Librairie Droz, 1964. [DOI:10.3917/droz.paret.1964.01]
38. [37] C. Coello Coello and M. Lechuga, "MOPSO: a proposal for multiple objective particle swarm optimization," in Proc., Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on, pp. 1051-1056.
39. [38] H. Qian, Y. Mao, W. Xiang, and Z. Wang, "Home environment fall detection system based on a cascaded multi-SVM classifier," in Control, Automation, Robotics and Vision, 2008. ICARCV 2008, 10th International Conference on, 2008, pp. 1567-1572.
40. [39] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, "Multiple cameras fall dataset," DIRO-Université de Montréal, Tech. Rep, vol. 1350, 2010.