Type of Study: Applicable |
Subject:
Paper

Received: 2018/07/14 | Accepted: 2019/07/10 | Published: 2020/06/21 | ePublished: 2020/06/21

Received: 2018/07/14 | Accepted: 2019/07/10 | Published: 2020/06/21 | ePublished: 2020/06/21

1. [1] I. J. Chiang, C. C. H. Liu, Y. H. Tsai, and A. Kumar, "Discovering Latent Semantics in Web Documents Using Fuzzy Clustering," IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2122-2134, 2015. [DOI:10.1109/TFUZZ.2015.2403878]

2. [2] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, Cambridge University Press, 2009, pp. 496. [DOI:10.1017/CBO9780511809071]

3. [3] K. R. Pole and V. R. Mote, "Name Entity Recognition and Natural Language Processing for Improvised Fuzzy clustering in Web Documents," Intenational Journal of Advance Research in Science and Engineering, vol. 6, no. 09, 2017. [DOI:10.1109/ICISIM.2017.8122161]

4. [4] D. Bollegala, Y. Matsuo, and M. Ishizuka, "A Web Search Engine-Based Approach to Measure Semantic Similarity between Words," IEEE Transactions on Knowledge and Data Engi-neering, vol. 23, no. 7, pp. 977-990, 2011. [DOI:10.1109/TKDE.2010.172]

5. [5] B. Jiang, Z. Li, H. Chen, and A. G. Cohn, "Latent Topic Text Representation Learning on Statistical Manifolds," IEEE Transactions on Neural Networks and Learning Systems, pp. 1-12, 2018. [DOI:10.1109/TNNLS.2018.2808332] [PMID]

6. [6] C. S. S. Kumar, M. Mohanapriya, and C. Kalaiarasan, "A new approach for information retrieval in semantic web mining involving weighted relationship," in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1-4. [DOI:10.1109/ICIIECS.2017.8276095]

7. [7] R. Zhao and K. Mao, "Fuzzy Bag-of-Words Model for Document Representation," IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 794-804, 2018. [DOI:10.1109/TFUZZ.2017.2690222]

8. [8] M. K. Rafsanjani, Z. A. Varzaneh, and N. E. Chukanlo, "A Survey Of Hierarchical Clustering Algorithms," Journal of Mathematics and Computer Science(JMCS), vol. 5, no. 3, pp. 229-240, 2012. [DOI:10.22436/jmcs.05.03.11]

9. [9] H. Park, K. Kwon, A. i. Z. Khiati, J. Lee, and I. J. Chung, "Agglomerative Hierarchical Clustering for Information Retrieval Using Latent Semantic Index," in 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), 2015, pp. 426-431. [DOI:10.1109/SmartCity.2015.108]

10. [10] D. Rahmawati, G. A. P. Saptawati, and Y. Widyani, "Document clustering using sequential pattern (SP): Maximal frequent sequences (MFS) as SP representation," in 2015 International Conference on Data and Software Engineering (ICoDSE), 2015, pp. 98-102. [DOI:10.1109/ICODSE.2015.7436979]

11. [11] G. Bordogna and G. Pasi, "Hierarchical-Hyperspherical Divisive Fuzzy C-Means (H2D-FCM) Clustering for Information Retrieval," in 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009, vol. 1, pp. 614-621. [DOI:10.1109/WI-IAT.2009.104]

12. [12] Nisha and P. J. Kaur, "Cluster quality based performance evaluation of hierarchical clustering method," in 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 2015, pp. 649-653. [DOI:10.1109/NGCT.2015.7375201]

13. [13] C. Subbalakshmi, G. R. Krishna, S. K. M. Rao, and P. V. Rao, "A Method to Find Optimum Number of Clusters Based on Fuzzy Silhouette on Dynamic Data Set," Procedia Computer Science, vol. 46, pp. 346-353, 2015. [DOI:10.1016/j.procs.2015.02.030]

14. [14] M. Kaur and U. Kaur, "Comparison between k-means and hierarchical algorithm using query redirection," International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 7, 2013.

15. [15] J. T. Chien, "Hierarchical Theme and Topic Modeling," IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 3, pp. 565-578, 2016. [DOI:10.1109/TNNLS.2015.2414658] [PMID]

16. [16] Q. Mao, W. Zheng, L. Wang, Y. Cai, V. Mai, and Y. Sun, "Parallel Hierarchical Clustering in Linearithmic Time for Large-Scale Sequence Analysis," in 2015 IEEE International Conference on Data Mining, 2015, pp. 310-319. [DOI:10.1109/ICDM.2015.90] [PMCID]

17. [17] A. J. C. Trappey, C. V. Trappey, F. C. Hsu, and D. W. Hsiao, "A Fuzzy Ontological Knowledge Document Clustering Methodology," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 3, pp. 806-814, 2009. [DOI:10.1109/TSMCB.2008.2009463] [PMID]

18. [18] T. X. Society, S. Wang, Q. Jiang, and J. Z. Huang, "A Novel Variable-order Markov Model for Clustering Categorical Sequences," IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 10, pp. 2339-2353, 2014. [DOI:10.1109/TKDE.2013.104]

19. [19] A. Ensan and Y. Biletskiy, "Matching semi-structured documents using similarity of regions through fuzzy rule-based system," in Industrial Conference on Data Mining, 2013, pp. 205-217: Springer. [DOI:10.1007/978-3-642-39736-3_16]

20. [20] D. A. Grossman and O. Frieder, Information retrieval: Algorithms and heuristics. Springer Science & Business Media, 2012.

21. [21] A. N. Langville and C. D. Meyer, Google's PageRank and beyond: The science of search engine rankings, Princeton University Press, 2011.

22. [22] D. M. W. Powers, "Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation," Journal of Machine Learning Technologies, pp. 37-63, 2011.

23. [23] A. Dalli, "Adaptation of the f-measure to cluster based lexicon quality," EACL 2003 Workshop on Evaluation, pp. 51-56, 2003. [DOI:10.3115/1641396.1641404]

24. [24] C. J. v. RIJSBERGEN, INFORMATION RETRIEVAL. Newton, MA: Butterworth, 1979.