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Abstract

The potential of social networks to extract valuable insights into user behavior has become a focal point
of research. With the proliferation of social media platforms, people are increasingly sharing their
experiences online. This wealth of user-generated data provides unique opportunities to understand
movement patterns and predict future behavior. Location-based social networks like Foursquare
exemplify this, allowing users to check in at various locations and enabling researchers to analyze these
data points.By analyzing the data collected from these platforms, we can uncover patterns in user
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behavior, such as frequently visited locations and the factors influencing these choices. This information
can be invaluable for businesses and urban planners.To improve the accuracy of predicting a user’s next
location, this study focuses on identifying the most influential friends or individuals in a user's social
network. Factors such as the strength of these relationships, historical visit data, and temporal-spatial
characteristics are considered. Additionally, the study emphasizes the importance of data quality,
focusing on locations that have been visited more than 100 times to ensure reliability.

A key aspect of this research is understanding the influence of social connections on individual behavior.
By analyzing the overlap in visited locations between friends, the study aims to identify the most
influential friends for each user. These influential friends are then used to predict the user's next
location.

The proposed method employs machine learning techniques, specifically RandomForest and recurrent
neural networks (LSTM, RNN, and GRU), to predict user behavior. RandomForest is used to analyze
the data and identify the most significant features, while recurrent neural networks are employed to
model the sequential nature of user behavior. Among these, LSTM achieved the highest accuracy of
71% in predicting users' next locations.This research demonstrates that combining artificial intelligence
with spatial-temporal data can provide profound insights into human behavior in urban and digital
environments. By understanding these patterns, businesses can tailor their offerings to individual
customers, and urban planners can design more efficient and user-friendly cities.

Keywords: Location-based social networks, recommender systems, spatial data mining.
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(Figure-1): Social communication in the location-based network
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(Table-3): Evaluation of single-user recurrent neural network
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