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Abstract

K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent
available recommender systems. These methods involve in predicting the rating of an item based on the
mean of ratings given to similar items, with the similarity defined by considering the mean rating given
to each item as its feature. This paper presents a KRS developed by combining the following
approaches: (a) Using the mean and variance of item ratings as item features to find similar items in an
item-wise KRS (IKRS); (b) Using the mean and variance of user ratings as user features to find similar
users with a user-wise KRS (UKRS); (¢) Using the weighted mean to integrate the ratings of neighboring
users/items; (d) Using ensemble learning. Three proposed methods EVMBR, EWVMBR and
EWVMBR-G are presented in this paper. All three methods are user-based, in which VM distance is
used as a measure of the difference between users / items, to find neighboring users / items, and then the
weighted average is weighted, respectively. Also, weights based on the Gaussian combined covariance
model are used to predict unknown user ratings. Our empirical evaluations show that the proposed
method EVMBR, EWVMBR and EWVMBR-G, which utilizes ensemble learning, are the most accurate
among the methods evaluated. Depending on the dataset, the proposed method EWVMBR-G managed
to achieve 20 to 30 percent lower mean absolute error than the original MBR. In terms of runtime, the
proposed methods are comparable to the MBR and much faster than the slope-one method and the
cosine- or Pearson-based KNN recommenders.

Keywords: K-Nearest Neighbor, Rating, Variance, Recommender System.
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%

if (k == 1) then
continue
endif
*[any item that is rated O cannot be a neighbor/*
if (s == 0) then
continue;
endif
mdy, = abs(u; — )
if (mdl-k < 6) then
nb=nb+1
nbsum = nbsum + sy,
endif
endfor

/* Step 2: Predict the rating of item i */
if (nb>1)then

__ nbsum
ui — nb
else
Pui = K
endif
end

RSMD ety 5o81 oS a1 (Y- JSCi)
(Figure-3): RSMD algorithm pseudo-code
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Algorithm 1: Pseudo Code of RSMD [5]
Inputs:

&: Neighborhood threshold

s: User-item table

m: Number of items

u: Target user index

i: Target item index

Outputs:

pyi: Predicted rating of item i by user u

[* Step 1: Determine the neighbors of item i */

nb = 0 // Number of neighbors of item i

nbsum = 0 // Sum of ratings given to the neighbors
of item i

fork=1tom

*/ item i cannot be a neighbor of itself /*
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(Figure-4): RMSE of the evaluated methods
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(Table-1): MAE of the evaluated methods

Method MovieLens100K DouBan EachMovie
P-kNN 0.8363 0.7089 0.2277
C-kNN 0.7487 0.6366 0.1980
Slope-one 0.7421 0.5902 0.2900
[35] 0.6214 0.6137 0.1477
[36] 0.6971 0.5740 0.1398
[37] 0.7741
[38] 0.6733 - -
MBR 0.7389 0.5869 0.1933
VMBR-I 0.6702 0.5296 0.1410
VMBR-U 0.7062 0.5794 0.1503
WMBR-I1 0.6175 0.4673 0.1294
WMBR-U 0.6572 0.5119 0.1437
WVMBR-I 0.6165 0.4637 0.1294
WVMBR-U 0.6565 0.5116 0.1435
EVMBR 0.6519 0.5310 0.1415
EWVMBR 0.5970 0.4636 0.1292
EWVMBR-G 0.5893 0.4612 0.1258
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(Table-2): Runtime of the evaluated methods (in seconds)

P (G 3haus) il )ly KoS by (5 )3 63403 Sty Aslobw

Method MovieLens100K DouBan EachMovie
P-kNN 410.2365 120765.6565 21087.7639
C-kNN 399.6544 118654.7629 20546.6532
Slope-one 397.2097 117233.7626 20351.6334
[35] 4.3344 9765.2024 3232.5632
[36] 4.8934 9234.3250 8113.7501
[37] 3.3250
[38] 45634
MBR 2.3885 6543.0187 1072.4803
VMBR-I 0.5260 4040.3133 106.7081
VMBR-U 0.2961 66.5703 584.4321
WMBR-I 3.1222 8569.7917 1271.8774
WMBR-U 3.0339 835.3166 7145.0752
WVMBR-I 2.9670 4755.3064 1232.4631
WVMBR-U 3.2888 814.72806 7113.4829
EVMBR 0.6877 4093.5993 709.9855
EWVMBR 6.5287 9444.0830 8374.5360
EWVMBR-G 6.8901 9546.0932 8560.5500
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(Figure-8): Comparison of the final three proposed methods
in terms of execution time with competing methods
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