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Short Term Load Forecasting Using Empirical Mode
Decomposition, Wavelet Transform and Support
Vector Regression

Ruhollah Keshvari, Maryam Imani* & Mohsen Parsa Moghaddam
Faculty of Electrical and Computer Engineering, Tarbiat Modares University,
Tehran, Iran

Abstract

The Short-term forecasting of electric load plays an important role in designing and operation of power
systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-
seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term
daily and hourly load forecasting is proposed. In this method, in the first step, the intrinsic mode
functions (IMFs) of the Electric load curve, which are a group of average and pseudo-periodic average
signals, are extracted by using the empirical mode decomposition (EMD) method, which is a non-linear
and non-constant time-frequency method. For this purpose, the maximum and minimum points of the
signal are determined, and then, in one cycle, the difference between the average curve of the upper and
lower envelope is calculated with it. This continues until the result falls below a threshold value, and
then, the rest of the signal which contains noise is discarded to get a relatively clean signal. In the second
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step, we need to obtain the sub-sequences of each IMF. So, we use the wavelet transform. The wavelet
transform is a kind of transform that is used to decompose a continuous signal into its frequency
components, and the resolution of each component is equal to its scale. Each subsequence contains
different information and details that can help the improvement of the prediction accuracy. In the third
step, the obtained subsequences are aggregated and finally used for prediction by Support Vector
Regression (SVR). Support vector regression is a type of supervised learning system that is used for both
grouping and estimating the fitting function of data in regression problems so that the least error occurs
in the grouping of data or in the fitting function. The purpose of the proposed method is to reduce the
error for daily and hourly load prediction. In this method, two datasets of Poland and Canada have been
experimented. With four criteria of mean square error (MSE), root mean square error (RMSE), average
absolute percentage error (MAPE) and mean absolute error (MAE), the results are evaluated. The
findings show that the load prediction error for the Polish data set are as follows: MSE equal to 0.0012,
RMSE equal to 0.0342, MAPE equal to 2.9771, and MAE equal to 0.0044. For Canadian data set, the
results are as follows: MSE equal to 5.0969e-07, RMSE equal to 7.1393e-04, MAPE criterion equal to
0.9571, and the MAE criterion equal to 2624e-04. Comparison of the proposed method with other
competing methods show that better results are achieved by the proposed method in term of the error
rate.

Keywords: Short-term electrical load forecasting, Electricity demand, empirical mode decomposition,
wavelet transform, support vector regression
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Dataset 0.6477 1.0733 0.9681
IMF1 -0.2340 0.1843 | -3.3830e-04
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IMF3 -0.0975 0.1263 0.0072
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IMF7 0.6477 1.0733 0.9681
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