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Abstract
Today, online social media with numerous users from ordinary citizens to top government officials,
organizations, artists and celebrities, etc. is one of the most important platforms for sharing information
and communication. These media provide users with quick and easy access to information so that the
content of shared posts has the potential to reach millions of users in a matter of seconds. Twitter is one
of the most popular and practical/used online social networks for spreading information, which, while
being reliable, can also, be a source for spreading unrealistic and deceptive rumors as a result can have
irreversible effects on individuals and society.

Recently, several studies have been conducted in the field of rumor detection and verify using
models based on deep learning and machine learning methods. Previous research into rumor detection
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has focused more on linguistic, user, and structural features. Concerning structural features, they
examined the retweet propagation graph. However, in this study, unlike the previous studies, new
structural features of the reply tree and user graph in extracting rumored conversations were extracted
and analyzed from different aspects.

In this study, the effectiveness of new structural features related to reply tree and user graph in
detecting rumored conversations in Twitter events were evaluated from different aspects. First, the
structural features of the reply tree and user graph were extracted at different time intervals, and
important features in these intervals were identified using the Sequential Forward Selection approach.
To evaluate the usefulness of valuable new structural features, these features have been compared with
consideration of linguistic and user-specific features. Experiments have shown that combining new
structural features with linguistic and user-specific features increases the accuracy of the rumor
detection classification. Therefore, a rumor classification algorithm based on new structural, linguistic,
and user-specific features in rumor conversation detection was proposed. This algorithm performs
better than the basic methods and detects rumored conversations with greater accuracy. In addition,
due to the importance of the source tweet user in conversations, this user was examined and analyzed
from different aspects. The results showed that most rumored conversations were started by a small
number of users. Rumors can be prevented by early identification of these users on Twitter events.

Keywords: Conversion, Rumor detection, Twitter, Reply tree, User graph.
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(Table-1): A summary of important research in the field of rumor detection and verification
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Algorithm 1: create reply tree
Input: conversation ‘s tweets
Output: reply tree
for each tweet in conversation:
if reply _tweet_id is null:
Create tree
Add tweet as root node
else:
Add tweet as node to reply tree
Add edge between this node and source node
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Algorithm2: create user graph

Input: conversation ‘s tweets

Output: user graph

for each tweet in conversation:
if reply _tweet_id is null:

g ooy sl b ol asle ciw loylae Jols
sldb o3 Jed 5l anls jlasl ppase slo)las
4 fewly Congi ladl gloy alols cavs gy o
Create graph s S (V) Jeoo [31] cwl ol v cuy
Add user as root node ae | .
else DB (0 QL....; \) GML’ S50 0w C‘JM‘
if has_edge in graph:
edge ['weight] +=1 L
else: Ol BlF -Y-Y
Add user as node to user graph
Add edge between this node and source node
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(Table-2): Shows the new structural features in the reply tree and user graph
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(Table 3): Summary of experiments and their goals
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(Table-5): Show the selected features at 6, 12, 18, and 24

-hour intervals. Marks * indicates that the feature

is selected at that interval.
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(Table-7): Show results Comparison the linguistic, user, and structure features using the XGBoost classifier. Includes F1-score,
precision, recall rumor and non-rumors classes and also shows the weighted average of F1-score and AUC .
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(Table-8): Show the results weighted average of F1-score,
precision and recall of the proposed method in comparison
with the basic methods.
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