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A New Nonlinear Recurrent Type-2 Fuzzy Model to
Identify the Behavior of Nonlinear Dynamic Systems

Jafar Tavoosit, Sajad Yousefi?
Department of Electrical Engineering, llam University, llam, Iran
Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.

Abstract

In this paper, a new recurrent type-2 fuzzy neural network for nonlinear dynamic systems identification
is presented. The structure of the new type-2 fuzzy neural network with the non-linear ""then' part has 8
layers. In layers 0, 1 and 2, the fuzzification operation is performed, and the upper and lower limits of
the membership degree are determined. Normalization and weighting operations are performed in
layers 3 and 4. In layer 5, there are non-linear trigonometric functions, which in fact, form the **then™
part of the fuzzy system, and return feedback from the output layer enters this layer. Finally, in the 6th
and 7th layers, the de-fuzzification operation and the output calculation are performed. The existence of
non-linear functions in the “then” part of the fuzzy rules helps to better approximate and identify the
dynamic system. The reason for this problem is probably the non-linear nature of the systems. The
main idea of this work is inspired by the Fourier series. Any function can be approximated by Fourier
series, and since Fourier series includes sentences of sine and cosine, therefore, ideas are taken from
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Fourier series and trigonometric functions are used in the ""then' part of the fuzzy rules. This type of
nonlinear function is taken from functional link models. The advantage of the non-linear then part is, in
addition to more accurate system identification, the number of fuzzy rules is less.

In order to check and evaluate the performance of the network in system identification, the input-output
information of two physical systems (a DC motor and a flexible robot arm) has been applied to the type-
2 recurrent fuzzy neural network. This research is completely experimental and practical, in other
words, it is the use of artificial intelligence techniques in operational work. In addition to presenting a
new neural network, generating a suitable signal to stimulate the system, extracting data from practical
systems, data pre-processing (removing outliers, estimating missing data, and normalizing data) is
among the innovations of this article. In the simulation, the root mean square error criterion shows that
the proposed method has a better performance than other methods. The RMSE criterion, which
indicates the accuracy of the model, was less than 0.001 for example 1 and less than 0.002 for example 2,
which are very suitable numbers.

Keywords: Recurrent Type-2 Fuzzy Neural Network, System Identification, Nonlinear ""Then" Part.
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(Table-2): The final parameters of the proposed recurrent type-2 fuzzy neural network in DC motor modelling
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