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Improve Text Representation Using RST-based Deep

Neural Networks

Erfaneh Gharavi and Hadi Veisi
School of Data Science, University of Virginia, VA, USA
Data and Signal Processing Lab, Faculty of New Sciences and Technologies, University
of Tehran, Tehran, Iran

Abstract

Finding a highly informative, low-dimensional representation for texts, specifically long texts, is one of the
main challenges for natural language processing (NLP) tasks. For texts longer than sentences or a
paragraph, finding a good representation beyond the bag-of-words model without losing word order is still
a challenge. This representation should capture the semantic and syntactic information of the text while
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retaining relevance for large-scale similarity search and accurate text classification. We propose the
utilization of Rhetorical Structure Theory (RST) to consider the text structure in the representation. RST
is a theory of text organization that describes relations that hold between parts of text and creates a tree-
structure format for the text document. RST can model the importance and relationship between
sentences or phrases as well. Rhetorical relations or discourse relations are paratactic (coordinate) or
hypotactic (subordinate) relations that hold across two or more text spans. These relations are applied
recursively in a text, until all units in that text are constituents in an RST relation. RST establishes two
different types of units: Nuclei and satellites. Nuclei are considered as the most important parts of text and
contains basic information whereas satellites contribute to the nuclei and are secondary and contains
additional information about nucleus.

In this paper, we examine the effect of using this structure on two different NLP tasks. In information
retrieval, to embed document relevance in distributed representation, we use a Siamese neural network to
jointly learn document representations. Our Siamese network consists of two sub-networks of recursive
neural networks (RNN) built over the RST tree. It means that two chunks (i.e., edu) of the text are merged
according to their relation in the RST tree. For this task, we use a subset of Reuters’s news corpus
(includes eight topics) and BBC news dataset (includes five topics). In the implementations, DPLP parser
is used to pars RST trees. The results show that our approach outperforms conventional text
representations like TF-IDF, LDA, LSA and word vector averaging. The proposed representation beats the
best conventional method by %6 and %3 in precision at k retrieved documents on BBC and Reuters
datasets, respectively. As another task, in the sentiment analysis, first, we use an RST-based recursive
neural network to represent movie reviews and classify the polarity of people’s opinions (positive and
negative). Then, we propose to use the nucleus-satellite information of a node in the RST-tree to build an
attention mechanism by deep RNN to generate better discourse representations. We test the effectiveness
of our approach on sentiment analysis task, and we prove that considering the importance of the text span
improves sentiment analysis performance by %3 on the internet movie review database in comparison
with the baseline standard RNN and 2% improvement in comparison with the attention-based RNN. In
this paper, we improve the text representation by the RST-based deep neural network. This approach can
be further evaluated on the other languages to show the effectiveness of using the semantic information
embedded in the RST format of the text.

Keywords: Document Embedding, Semantic Representation, Rhetorical Structure Theory, Deep Neural
network, Attention Mechanism
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Figure 1: Schematic representation for SDS-RNN
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Figure7: A 2-dimensional embedding for representations of test documents by
different methods using t-sne. See in color for better visualization.
sentiment analysis,” Commun. ACM, vol. 58,
no. 7, pp. 69-77, 2015. 6-Refrence &=l o ¥

[9] D. Marcu, “Discourse Trees are Good Indicators
of Importance in Text,” in Advances in
Automatic Text Summarization, 1999, pp. 123
136.

[10] W. C. Mann and S. A. Thompson, “Rhetorical
Structure Theory: Toward a functional theory of
text organization,” Text, vol. 8, no. 3, pp. 243—
281, 1988.

[11] D. Noel, Towards a functional
characterization of the news of the BBC World
Service. 1986.

[12] B. A. Fox, Discourse Structure and
Anaphora: Written and Conversational English.
Cambridge University Press, 1993.

[13] R. Salakhutdinov and G. Hinton, “Semantic
hashing,” Int. J. Approx. Reason., vol. 50, no. 7,
pp. 969-978, 20009.

[14] Q. Wang, D. Zhang, and L. Si, “Semantic
hashing using tags and topic modeling,” in
Proceedings of the 36th international ACM
SIGIR conference on Research and development
in information retrieval - SIGIR ’13, 2013, p.
213.

[15] M. A. Livermore, F. Dadgostari, M. Guim, P.
Beling, and D. Rockmore, “Law Search as
Prediction,” Virginia Public Law Leg. Theory
Res. Pap., no. 2018-61, 2018.

[16] P. Huang et al., “Learning Deep Structured
Semantic Models for Web Search using
Clickthrough Data,” 22nd ACM Int. Conf. Conf.
Inf. Knowl. Manag., pp. 2333-2338, 2013.

[17] J. Mueller, “Siamese Recurrent Architectures
for Learning Sentence Similarity,” Proc. 30th
Conf. Artif. Intell. (AAAI 2016), no. 2012, pp.
2786-2792, 2016.

[18] C. Lioma, B. Larsen, and W. Lu, “Rhetorical
Relations for Information Retrieval,” in
Proceedings of the 35th International ACM

[1] R. Socher, C. D. C. Manning, and A. Y. A. Ng,
“Learning continuous phrase representations
and syntactic parsing with recursive neural
networks,” Proc. NIPS-2010 Deep Learn.
Unsupervised Featur. Learn. Work., pp. 1-9,
2010.

[2] R. Socher, C. Manning, B. Huval, and A. Ng,
“Semantic compositionality through recursive
matrix-vector spaces,” in EMNLP-CoNLL ’12:
Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language
Processing and Computational  Natural
Language Learning, 2012, pp. 1201-1211.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C.
Janvin, “A Neural Probabilistic Language
Model,” J. Mach. Learn. Res., vol. 3, pp. 1137—
1155, 2003.

[4] K. S. Tai, R. Socher, and C. D. Manning,
“Improved Semantic Representations From
Tree-Structured Long Short-Term Memory
Networks,” Proc. 53rd Annu. Meet. Assoc.
Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang.
Process., pp. 15561566, 2015.

[5] N. Kalchbrenner, E. Grefenstette, and P.
Blunsom, “A Convolutional Neural Network for
Modelling Sentences,” Acl. pp. 655-665, 2014.

[6]Q. V. Le and T. Mikolov, ‘“Distributed
Representations of Sentences and Documents,”
vol. 32, pp. 1188-1196, 2014.

[71J. Markle-HuB, S. Feuerriegel, and H.
Prendinger, “Improving Sentiment Analysis
with Document-Level Semantic Relationships
from Rhetoric Discourse Structures,” in
Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017, pp.
1142-1151.

[8] A. Hogenboom, F. Frasincar, F. de Jong, and U.
Kaymak, “Using rhetorical structure ip

0O 2be ) 5Ll VFeY JLo


http://dx.doi.org/10.61186/jsdp.20.1.181
http://jsdp.rcisp.ac.ir/article-1-1004-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-05 ]

[ DOI: 10.61186/jsdp.20.1.181 ]

Grec pmos SlaaSub b cyio (3les )b Sgug Sl HEMW HUELw &y ,05 g )5 )l ey

4

Learn. Res., vol. 3, no. Jan, pp. 993-1022, 2003.

[34] S. T. Dumais, G. W. Furnas, T. K. Landauer,
S. Deerwester, and R. Harshman, “Using latent
semantic analysis to improve access to textual
information,” in Proceedings of the SIGCHI
conference on Human factors in computing
systems - CHI °88, 1988, pp. 281-285.

[35] C. Goller and A. Kuchler, “Learning task-
dependent  distributed  representations by
backpropagation through structure,”
Proceedings of International Conference on
Neural Networks (ICNN’96), vol. 1. pp. 347—
352, 1996.

[36] M. Morey, P. Muller, and N. Asher, “How
much progress have we made on RST discourse
parsing? A replication study of recent results on

the RST-DT,” Emnlp, pp. 1330—
1335, 2017.

chic  somiils (9,6 4lye
5 olodlbl g5l s, (ol 25
oBisls (pgi e g pale oaSliils
oo Gaaes wibos ol
Fres 650k (ormb 0l Aln plinl aBe )90

DSl Geile 650k 5 (Eohan gmac loaSl
Gl O yle Lt el Slas
e.gharavi@ut.ac.ir

wdy 5o 158 ghie adgel il omig 3B
yolo 0 cwl Guyd Bl 5l panslS  swiige
5 pole ouSCiiloys Al (g yald g pele 098 Lol
Sype (ShRgh Ae) iliee Gln oS (ng (y53
Wyo by (JESew SBbn Jeld Ll 4B
SrSk Fgan omar sloaSed oS el
GLis wiloe 3B Slaptans 5 38 Ghaie (Gros

5] el e il el

h.veisi@ut.ac.ir

0O 2be ) 5Ll VFeY JLo

SIGIR  Conference on Research and
Development in Information Retrieval, 2012,
pp. 931-940.

[19] Y. Ji and N. Smith, “Imported from Neural
Discourse Structure for Text Categorization.
(arXiv:1702.01829v1 [cs.CL])
http://arxiv.org/abs/1702.01829,” Preprint,
2017.

[20] W. Yin, H. Schiitze, B. Xiang, and B. Zhou,
“Abcnn: Attention-based convolutional neural
network for modeling sentence pairs,” arXiv
Prepr. arXiv1512.05193, 2015.

[21] and A. 1. Zhiguo Wang, Haitao Mi, “Semi-
supervised clustering for short text via deep
representation learning,” in The 20th SIGNLL
Conference on  Computational  Natural
Language Learning (CoNLL), 2016.

[22] S. R. Bowman, L. Vilnis, O. Vinyals, A. M.
Dai, R. Jozefowicz, and S. Bengio, “Generating
sentences from a continuous space,” arXiv
Prepr. arXiv1511.06349, 2015.

[23] P. Bhatia, Y. Ji, and J. Eisenstein, “Better
Document-level Sentiment Analysis from RST
Discourse Parsing,” Emnlp, no. September, pp.
2212-2218, 2015.

[24] M. Taboada, K. Voll, and J. Brooke,
“Extracting sentiment as a function of discourse
structure and topicality,” Tech. Rep., vol. 20, pp.
1-22, 2008.

[25] Y. Liu and M. Lapata, “Learning Structured

Text Representations,”  arXiv

Prepr. arXiv1705.09207, 2017.

[26] M. Kraus and S. Feuerriegel,

“Sentiment analysis based on

rhetorical structure theory:

Learning deep neural networks
< from discourse trees,” arXiv

g Prepr. arXiv1704.05228, 2017.

[27] C. D. Manning, P. Ragahvan, and H. Schutze,
An Introduction to Information Retrieval, no. c.
2009.

[28] T. Mikolov, K. Chen, G. Corrado, and J.
Dean, “Distributed Representations of Words
and Phrases and their Compositionality arXiv :
1310 . 4546v1 [ cs . CL ] 16 Oct 2013,” arXiv
Prepr. arXiv1310.4546, pp. 1-9, 2013.

[29] J. Pennington, R. Socher, and C. D. Manning,
“GloVe: Global  Vectors for  Word
Representation,” Proc. 2014 Conf. Empir.
Methods Nat. Lang. Process., pp. 1532-1543,
2014.

[30] R. Socher, “Recursive Deep Learning for
Natural Language Processing and Computer
Vision,” PhD thesis, no. August, 2014.

[31] Y. Ji and J. Eisenstein, “Representation
Learning for Text-level Discourse Parsing,”
Proc. 52nd Annu. Meet. Assoc. Comput.
Linguist., pp. 13-24, 2014.

[32] G. Salton and C. Buckley, “Term-weighting
approaches in automatic text retrieval,” Inf.
Process. Manag., vol. 24, no. 5, pp. 513-523,
1988.

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan,
“Latent Dirichlet Allocation David,” J. Mach.



http://dx.doi.org/10.61186/jsdp.20.1.181
http://jsdp.rcisp.ac.ir/article-1-1004-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-05 ]

[ DOI: 10.61186/jsdp.20.1.181 ]

1-3

evidence

N

1 2-3

S Al e 53 BlsS alal olgz b ¥ JS
Figure 8 : RST diagram for ""Tax Program™ text

Byl y Al
ol alaly ools las 6ln ol (n maly 5l (S
Girog |y abuly al (V) (F =Jguz) ol Taz 51055
Scientific a5l e SO aslsl o S e
:Cewlose] America
TS 320 e
Slp dlse onl g pae 9y 0 G
sl
s Ol Sl eole (nl 4z S
]

ol 5 o] Gasjle b B aales WY

3,185 3g>

5 ¥V sloasly a5 vas co lis sain gl e ol o
i 09l (6,5 5Lul Slhls pp g a5l o ¥
I Fr Sl oS0 039 (oo S Sjpe a
Ol sl O oot yae 2 (I wmlsds laid b o5ilr
Ol L oogill jeha wils cd¥s ludl glp o9 (sow
ombed 1y e cplrst jloged (9 JS8) el 185000

. 9-.‘}2, _v

' ples alal,
S ol aes b akal) jo cadles 550 g;“"?f alal,
GBS o (2155 el )3 g5 S)le ST e
abal, cpl ) Jouz) 018 3ew s 4y oasiles sl
S (oo oy |,

BIs5 abaly (Y Jgo)
Table 3: Evidence relation

<2l abal, oU

Gy aee cal Sow caiily> Lk D98
TS

Ol 5 95 o0 sl |y gy oasils> 953 2 292
b e ¥ e |,

389 59k cam 3l easilys S yo 97 9 Lk oS 398

A3 oo ili8l ) aies

Gl 5l oty gl A

aoe yuoyw 4 4l SOl (leS alal, 5l Jle
Aol 3l aumed 4 gl Cewl 0ol gzl Ziul BYTE
13310 5 co Caloas
Gl @il Lacl VoY Jb Jls gl a8 glasly -)
S (o0 ) (2970
2z 2 e Sl casilh slepyd ples Y5 Y
C)Lu L J..al} C)Lu 9 AW W o)|5 MQ
el GolB BB sl 1y 5880 B s Sl
abuly 0,V gV sloasly (M)F USS jo rst loges
G axly yo ead hyhae slesl o oalgs job il

iloass &l

..)Jbs)c’.a
ol aly (¥ - Jou)
Table 7: Concession relation
ol abal) ol
W S (e 9,505, ol gl Ld 5.8
Syl atus o ouds &l Csdgo
9r S PO (Se ol 9y 3 098

0sally (5,5l S 4 odin g 9y 9 Md oS 5 p 09
odds &l Comdss o ST L

Syl ledl gy g aes o

5o ol &l ConBge 4y iz

5 Concession
6 Although
7 Dioxin

L Evidence

ST oS 0pd e a8, S )0 (slazys psgie Sy sl ISE 0T

L oo sla Sy Fn bl 99,0008 Jlod & 635 50 b S 95>

S laoslad ples olss (o) Lo iz Jle lp oS oo rogs

oty 5 oS5 51 ELL oS5 5 Logy) o el oS 5 ouiles >
ol i ol 15 08 oo (S50

3 credible
4 locus

0O 2be ) 5Ll VFeY JLo



http://dx.doi.org/10.61186/jsdp.20.1.181
http://jsdp.rcisp.ac.ir/article-1-1004-fa.html

[ Downloaded from jsdp.rcisp.ac.ir on 2026-02-05 ]

[ DOI: 10.61186/jsdp.20.1.181 ]

Grec pmos SlaaSub b cyio (3les )b Sgug Sl HEMW HUELw &y ,05 g )5 )l ey

4

UCLA jl 5 Jio 5 by abaf 51 s
Sygo o by gy ol soe] PERSONNEL News
ol ALbgi )9
Lax slapd og sad Cwlyz i clasels L)
DS 1y OBl (Sl b g e SLle
Condy b5 ol Condy o iy 45 Hloj o
S 3929 SOl

o ;S., &S Cewloads  somlice 60)‘5.@ ‘).._‘>| .r‘

lodS oo 2l 1, Lo diillas

cdad wox glap b oSS e o plaia)lS 15 L F

)90
& WS 0 oyl &S 1) glbyd dhaly e )
385 (FaeBye B 0 g0 pl ) 4Bl 3aoS Coadge
9= B W) 43‘)‘ Coxs “9.4 9.0.70 5 Cawlodlds )SQ A

0O 2be ) 5Ll VFeY JLo

Wil Sigo 4 gy g dles
on Gl pasis 0S5
g Ak 0 0uds &l glacusdse
o 0ailyz oo 3,503, 9
Iy as (o ond &l Codge a

Al ol aae jo ouds &)

5mjw

elaboration

concession

“rnS 528" e 53 loxry Al 0,la o (A= JS)
Figure 8 : RST diagram for "'Dioxin"" text
b 4l
—osels M b yh o8 b oSSl by p0 (Lo alad,
Ol eads all daylg ) pled wiile caiz o csloalds (gas
bt aaly wiis g9 4 5 lae Luly) oS (o)
abaly ol Jga2) o)l U7 o le b i 4 5l

A o b

by akaly (A= Jgu)

Table 8: Condition relation

by abal) pU

5, EVOWESIIIN

ly asdls 3a b (o28 (esdse 55m 9 R O5d
S oo ol

A s 0 odd Al ComBge BRoU | g Al oS5 048

oy 3 ond Wl CosBee 3ExS 9
Byl (K

SsSr 85 sy arsie sl K

K 5> oad )] Comdge (oS
53 oad &il)) Combge 3ioS 4 (K

.QJL) 92

1 Conditional clause



http://dx.doi.org/10.61186/jsdp.20.1.181
http://jsdp.rcisp.ac.ir/article-1-1004-fa.html
http://www.tcpdf.org

