تشخیص چهره با استفاده از PCA و فیلتر گابور

حمید رضا فرخ، محسن سریانی و عباس کوچاری
دانشکده مهندسی کامپیوتر، دانشگاه علم و صنعت ایران

چکیده

روش‌های تشخیص چهره که مبتنی بر ساختار چهره هستند، روشهای بدون نظریه مبتنی هستند. روشهای بدون نظریه مبتنی که در تئوری رخ شناسی مطرح شده‌اند - به نظر می‌رسد که مشابه حس می‌کنند. PCA یک تبدیل خفیف است که اکثر قدرتمندتر برای تجزیه و تحلیل داده‌هایی است که دارد تغییرات مختلفی که تغییرات خنثی چهار ناشی از تغییرات حالت، روش در ورود به تغییرات مطلوب می‌باشند. ویژگی‌های PCA مورد استفاده قرار گرفت.

فیلتر گابور یکی از روشهای مبتنی بر ویژگی است که می‌تواند برای رفع نهایی شاخه PCA مورد استفاده قرار گیرد.

در این مقاله، برای تشخیص چهره با ترتیبی و ترکیبی روشهای PCA و گابور ارائه شده است. به‌دنبال مطالعه و تحلیل چندین مدل، نتایج نشان داده شد که اکثر این اعمال PCA بر روی تصاویر میانگین برای تشخیص چهره استفاده می‌گردند. روشهای پیشنهادی بر روی یک گزارش داده مشابه PCA به‌دست آمده است. نتایج روشهای پیشنهادی نسبت به روشهای PCA بهتر عمل می‌کنند.

واژگان کلیدی: تشخیص چهره، فیلتر گابور، تحلیل مولفه اصلی

1 مقدمه

روشهای تشخیص چهره، کلیه‌های مربوط به تشخیص و تشخیص چهره فرد از آرایه‌های مختلف در دنیای دیجیتال به‌عنوان یکی از اکثر اعمال پایه‌گذاری شده است. PCA یک تبدیل معمول در تئوری رخ شناسی می‌باشد. این روش برای تشخیص و تشخیص چهره مبتنی بر ویژگی‌های چهار وابسته به داده‌های ورودی ناشده است. PCA یک روش تحلیل مولفه‌ای اصلی (PCA) که برای استخراج ویژگی‌های وابسته به داده‌های ورودی استفاده می‌گردد.

(2007) ویژگی‌های چهار یکی از استخراج ویژگی‌های اصلی است که می‌تواند برای استخراج ویژگی‌های اصلی از تصویرهای گزارش شود (2006 , (PCA)

1 Principal Component Analysis

2 Independent Component Analysis

3 Linear Discriminate Analysis

سال 1389 شماره 1 پاییز 13
در این مقاله روش‌های تدابیری استفاده از PCA و گاباری ارائه می‌گردد. کریک خلیعی دو الگوریتم اصلی گزارشی و استفاده در هر یک از الگوریتم‌ها، نمونه‌های چهار موردی شده و محدودی که به همان شکل استفاده می‌شود. تصویری در این روش با توجه به محاسباتی بسیار پایین استفاده از الگوریتم گزارشی از تصویر بسته آمده، مایل گریوی، و سپس تبدیل اعمال گزارشی. فیلتر گزارشی باعث بسته آمده و توانایی مقدار در برگیرنده مانعی از دسترسی نیز می‌گردد. در ضمن در اینجا برخی از تحلیل گزارشی گزارشی بر روی نقشه تصویر اعمال (Chung, 1999) شده است.

ساختار مقاله به این ترتیب است که در بخش دو PCA و گاباری گزارشی (Rizik, 2006) و گزارشی گزارشی (Delac, 2007) مورد استفاده قرار گیرد. زیرا گزارشی صورت از مقدار ویژه و گزارشی ویژه مربوط به (Delac, 2007) ماتریس کوواریانس داده استفاده کردهاند. اگر داده ورودی X را به صورت زیر در نظر بگیریم:

\[X = [X_1, X_2, \ldots, X_n] \]

(1)

به تعداد N هر که \(n \) که \(X_i \) یک تولیده داده با ابعاد \(D \) در ابتدا می‌باشد. از این منظوره، نمونه‌های مورد شکل از هر یک از نمونه‌های داده کمی گردیده (ارایه‌های).

\[X = [X_1 - \bar{X}, X_2 - \bar{X}, \ldots, X_n - \bar{X}] \]

(2)

سپس ماتریس کوواریانس \(\Sigma \) از رابطه زیر محاسبه می‌گردد:

\[\Sigma \bar{X} = \frac{1}{n} X^T \]

(3)

در این مقاله روش به نتیجه‌گیری ارائه گذارایی تابعی از توضیح داده شده است. در بخش سه با الگوریتم پیش‌نهادی تایپیک نیز استفاده می‌گردد. در اینجا یک تبدیل گزارشی گزارشی با استفاده از منابعی مربوط به خود (Bhuiyan, 2007) یکی از الگوریتم‌های ارائه گردد (Feng, 1998).

روش‌های تدابیری با استفاده از تکنیک ویژگی‌های (LDA و ICA-PCA) ارائه شده‌اند. مورد استفاده قرار گیرد. اما تأثیر ویژگی‌های ویژه مربوط به (Zou, 2007) نشان دهنده که استفاده از الگوریتم گزارشی و تدریجی آن با بیانات خصوصی می‌تواند نتایج بهتری حاصل کند (Liu, et al., 2003) (Chung, 1999).

این‌طور که PCA و گاباری با استفاده از الگوریتم گزارشی و استفاده کرده و LDA و ICA تدریجی PCA و گاباری به ترتیب با استفاده از LDA و ICA (Chung, 1999)

روش‌های تدابیری با استفاده از تکنیک ویژگی‌های (LDA و ICA-PCA) ارائه شده‌اند. مورد استفاده قرار گیرد. اما تأثیر ویژگی‌های ویژه مربوط به (Zou, 2007) نشان دهنده که استفاده از الگوریتم گزارشی و تدریجی آن با بیانات خصوصی می‌تواند نتایج بهتری حاصل کند (Liu, et al., 2003) (Chung, 1999).

روش‌های تدابیری با استفاده از تکنیک ویژگی‌های (LDA و ICA-PCA) ارائه شده‌اند. مورد استفاده قرار گیرد. اما تأثیر ویژگی‌های ویژه مربوط به (Zou, 2007) نشان دهنده که استفاده از الگوریتم گزارشی و تدریجی آن با بیانات خصوصی می‌تواند نتایج بهتری حاصل کند (Liu, et al., 2003) (Chung, 1999).

(Chou, 2007)
محورهای اصلی اکتوکن با محاسبه بردرهای ویژه
ماتریس کواریانس بیان می‌آید رابطه (۴).

\[
\Phi_X = \sum x \Phi_X
\]

\[
\lambda_X = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}
\]

ماتریس قطعی از مقدار ویژه متناظر با بردرهای ویژه \(\lambda_X \) است.

بردرهای ویژه متناظر با بیشترین مقدار ویژه، بردرهای اصلی با بیشترین واریانس داده و به‌عبارتی اجرای اصلی اولیه را پیان می‌نمایند.

اگر \(X_i \) داده شده با استفاده از PCA در حال ماتریس قطعی، به‌عنوان مثال در ماتریس خود
\(\Phi_X \) دارای خاصیت
\(\Phi_X = \Phi_X \) می‌باشد. داده در فضای
\(\Phi_X \) می‌تواند با استفاده از رابطه (۷) به فضای اصلی خود PCA برگردند.

\[
Y_i = \Phi_X^{-1}(X_i - \bar{X})
\]

با اید نویم که یک ماتریس قطعی به‌عنوان مثال

باید توهم خاصیت \(\Phi_X \) دارای خاصیت
\(\Phi_X = \Phi_X \) به فضای اصلی خود PCA برگردند.

\[
X_i = \Phi_X Y_i + \bar{X}
\]

\(\Phi_X \) اگر نه مجموعه از بردرهای ویژه در
انتشار شود، نتیجه با تصویر نمونه داده در یک روبرو حاصل خواهد شد. این مطلب برای کامیابی افزودنی در داده می‌تواند بسیار مفید باشد. برای حذف تمام بردرهای ویژه که برای صفره‌سازی مطالب فوق با جزییات بیشتر توسعه (Ershull et al., 2003) شرح داده شده است.

۲-۲- الگوریتم گاپور

در حال حاضر الگوریتم گاپور و تعمیم آنها به فضای دوبعدی به‌صورت گسترده در کاربردهای مختلف پیش‌بینی کامپیوتری مورد استفاده قرار می‌گیرد. (Daugman, 1988) توابع گاپور را به شکل دوبعدی که در رابطه (۸) نشان داده شده است، برای مدل کردن جهت‌بندی قابل انتخاب در سلول‌های ساده تعمیم داد.

\[
R(x_0, y_0) = \max_{(x,y) \in \Omega} \left(R(x, y) \right)
\]

\[
R(x_0, y_0) > \frac{1}{N_x N_y} \sum_{x=1}^{N_x} \sum_{y=1}^{N_y} R(x, y)
\]

سال ۱۳۸۹ شماره ۱ یا ۱۲
که در این روابط R_1, R_2 پاسخ تصویر به آسیمین فیلتر $g_{1,2}$ است حاصل ضرب $I_1 \times I_2$ در اندازه تصویر چهاره و نقطه w_1, w_2 مکان پرتو W_0 را نشان می‌دهند. اندازه نیز به یکی از ویژگی‌های مهم در الگوریتم پیشنهاد شده است. این اندازه می‌پایست از یک طرف به حدکافی کوچک انتخاب گردد تا ویژگی‌های مهم تصویر را بتواند استخراج نماید.

۲-۱-۲ مشاهده بردار ویژگی

بردارهای ویژگی در نقاط حاوی ویژگی بهصورت ترکیبی از ضرایب تیدلی موجک گاوسی تولید می‌گردد. K آمین بردار ویژگی از K آمین تصویر مرجع به شکل زیر تعیین می‌گردد:

$$V_{k} = \{x_{k}, y_{k}, R_{k}(x_{k}, y_{k})\}, i = 1, ..., 40$$

از آنجایی که ۲۰،۰۰۰ فیلتر گاوسی در این آزمایش وجود دارد بردارهای ویژگی ۱۲۰۰۰ که اولین درست کننده دو مؤلفه اول موقوفت نقطه حاوی ویژگی را با خریداری مختصات ارائه می‌نمایند. برای توضیح بسته می‌توان به مقالات (Vinay, 2006) و (Bhuiyan, 2007) مراجعه نمود.

۲-۱-۳ روش تطیفی (محاسبه نشانی‌های):

برای اندازه‌گیری تشنه مقدار بردارهای ویژگی مختلط، تابع تشنه ξ مورد استفاده قرار گرفته است که در (اثرات ξ در نظر گرفته است:

$$\xi(k, j) = \frac{\sum [P_{C}(x_{i})P_{d}(y_{j})]}{\sum [P_{C}(x_{i})^{2}] \sum [P_{d}(y_{j})^{2}]} i = 3, ..., 42$$

معروف تشنه $\xi(k, j)$ مورد آزمایش با پاس خاصی (آمین بردار ویژگی از آمین تصویر مرجع) است که ۴ تعداد عناصر بردار است. نتایج اندازه‌گیری پیشنهاد شده بین دو بردار محدوده زیر را برای S_{k} در نظر می‌گیرد:

$$0 < S_{k} < 1$$

و اگر ۴ آمین تصویر مرجع به عنوان تصویر مورد آزمایش در نظر گرفته شود، تشنه بین دو تصویر بیشترین می‌گردد.

شماره ۱۳۸۹ شماره ۱ پایان
در ادامه از تصاویر به‌دست آمده از فیلتر گاپور میانگین‌گری می‌شود که (شکل 3) نمونه‌ای از تصویر میانگین‌گری را نشان می‌دهد. دلیل میانگین‌گری از نتایج فیلتر گاپور افزایش سرعت سی‌بی‌اسد. در باشگاه آزمایش‌ها، سیستم‌ها با پارامترهای چگلی، یک‌پاره‌ای از طریق چهار تصویر به‌دست آمده و یک‌پاره از طریق میان‌گری از تصاویر سرویس فریک و با توجه به پیمان بودن نتایج و برای افزایش سرعت بازشناسی از میان‌گری استفاده شد.

(شکل 3) نمونه‌ای از یک تصویر میانگین

سپس این تصاویر خود بهصورت یک بانک اطلاعاتی جدید بهعنوان ورودی به الگوریتم PCA (فرازهای T1, T2, T3) در نتیجه با تلفیق دو الگوریتم در فرازهای T4 و T5 و یک بانک اطلاعاتی که شامل ویژگی‌های مهم تصاویر است، اقدام به نهایی تصاویر ویژه می‌نماییم.

(شکل 4) نمونه‌ای از این تصاویر ویژه با نشان می‌دهد.

سپس این تصاویر خود به‌صورت یک بانک اطلاعاتی جدید به‌عنوان ورودی به الگوریتم PCA داده می‌شوند (فرازهای T1, T2, T3). در نتیجه با تلفیق دو الگوریتم در فرازهای T4 و T5 و یک بانک اطلاعاتی که شامل ویژگی‌های مهم تصاویر است، اقدام به نهایی تصاویر ویژه می‌نماییم.

(شکل 4) نمونه‌ای از چهره‌های ویژه به‌دست آمده

پس از این مرحله از میان چهره‌های ویژه که PCA به‌دست آمده است، تعدادی که اطلاعات بیشتری در آن‌ها انتخاب می‌شود و ترمال شده آن‌ها در بانک تولید شده در مرحله آموزش‌دهی می‌گردد رابطه (17) را داشته باشد.

\[
\text{Vectors}(::i) = \text{Vectors}(::i) / \text{norm(Vectors}(::i))
\]

در این رابطه (\(i\)) یکی از چهره‌های ویژه \(\text{Vectors}(::i)\) با نام \(\text{Eigenvalues}\) از عدد 0.000000001 13893 شماره 1 13
حال فواصل تصویر چهره جدید روی فضای چپره را نسبت به تمامی تصاویر شناسایی شده فضای چپره محاسبه می‌کنیم.

\[\varepsilon^2 = \| \Omega - \Omega_i \|^2 \quad \text{for} \quad i = 1, \ldots, M \]
\[\delta = \| \Omega \|^2 \]

و در نتیجه اختلاف تصویر بازسازی شده و تصویر مورد نظر را می‌بایست.

\[\varepsilon^2 = \| \Omega - \Omega_i \|^2 \quad \text{for} \quad i = 1, \ldots, M \]

\[\delta = \| \Omega \|^2 \]

که در نتیجه آن:
\[\delta \geq \theta \]

\[\varepsilon^2 \leq \theta \]

\[\min (\varepsilon_i) < \theta \]

\[\text{تصاویر یک یا تصویر بازسازی شده است.} \]

نتایج آزمایش‌ها

(جدول 4) نتایج آزمایش‌ها

<table>
<thead>
<tr>
<th>Bank</th>
<th>Recognition Rate</th>
<th>Number of Images</th>
<th>Image size</th>
<th>File format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORL</td>
<td>98.3%</td>
<td>120</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
<tr>
<td>Yale</td>
<td>98.4%</td>
<td>120</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
</tbody>
</table>

در (جدول 4) کارایی بازشناسی با استفاده از PCA بر روی بانک‌های تصویر آزمایشی دیده می‌شود.

(جدول 1) نتایج بدست آمده از اجای کامپیوتر ORL و Yale تصاویر پیشنهادی

<table>
<thead>
<tr>
<th>Bank</th>
<th>Recognition Rate</th>
<th>Number of Images</th>
<th>Image size</th>
<th>File format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORL</td>
<td>94.2%</td>
<td>120</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
<tr>
<td>Yale</td>
<td>91.6%</td>
<td>65</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
</tbody>
</table>

PCA کامپیوتر بر روی تصویر‌های گرایشوندگان، و سپس از روی این تصاویر حاصل از این رویداد، و سپس از روی این تصاویر باستگی نسبت آماده کردن داده‌های مختلفی از فضای چپره، و سپس از روی این تصاویر، می‌تواند برای اجرای یک دستگاه سخت‌افزاری تصویری بازسازی شود.

(جدول 2) نتایج بدست آمده از اجای کامپیوتر ORL و Yale

روی تصاویر پیشنهادی

<table>
<thead>
<tr>
<th>Bank</th>
<th>Recognition Rate</th>
<th>Number of Images</th>
<th>Image size</th>
<th>File format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORL</td>
<td>98.3%</td>
<td>120</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
<tr>
<td>Yale</td>
<td>98.4%</td>
<td>120</td>
<td>320 x 243</td>
<td>PNG</td>
</tr>
</tbody>
</table>

در (شکل 1) میزان افرادی که با پیشنهادی کامپیوتر نشان داده شده است در حدود 4% بوده است که با پیشنهادی کامپیوتر نشان داده شده است.

PCA+ Mean Gabor

مشخص است که با پیشنهادی کامپیوتر نشان داده شده است.

ORL و Yale: میزان افرادی که مشخص است که با پیشنهادی کامپیوتر نشان داده شده است.

یک کامپیوتر بازسازی کامپیوتر پیشنهادی با استفاده از PCA و کامپیوتر پیشنهادی با استفاده از PCA کامپیوتر پیشنهادی در این بخش با پیشنهادی کامپیوتر نشان داده شده است.

برای نمونه تایپ‌های اجای کامپیوتر ORL و Yale تصاویر بازسازی شده است.

راه‌حل تصویر بازسازی، توانایی تغییر تصویر برای ساختن تصاویر بازسازی شده است.

\[\min (\varepsilon_i) < \theta \]

(جدول 3) نتایج آزمایش‌ها
5-نتایج گیری و کارهای آینده

در این مقاله روش‌های بهره‌برداری از تکیهگاه PCA و فیلنر گابور استفاده می‌کرد. برای ترکیب این دو ابزار ابتدا با اعمال فیلنر گابور بروی تصویر باره تصور گردیده و سپس با میانگین‌گیری از پایه‌های فیلنر گابور که از تصویر حاصل شد، یک تصویر از این تصور برای پایه‌سازی مدل آمده. این تصور را بدین ترتیب برای سیستم استفاده کرده و مدل‌هایی اکرلیک انرژی را به‌عنوان پایه‌های تصور و پایه‌های گابور می‌پوست. در نتیجه، این تصور را برای تشخیص آنان ناموفق بوده‌اند.

4-جدول 3: تجربه‌های از پایه‌سازی که گرافیک PCA و گرافیک پیشنهادی ORL و Yale در تشخیص آنان ناموفق بوده‌اند.

<table>
<thead>
<tr>
<th></th>
<th>PCA</th>
<th>ORL</th>
<th>Yale</th>
<th>proposed algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

5- مراجع

روش پیشنهادی بر روی مقایسه داده‌ها در مقاله استفاده کرده است (Zhou, 2007) که 1 استفاده از 1/3 مقایسه گردید که نتایج این مقایسه برای دو پایه‌سازی تصویر ORL و Yale در (جدول 5) دیده می‌شود. همان‌طور که مشاهده می‌شود، گرافیک آمیزه‌شده (PCA+Mean) بهتر عمل می‌کند.

<table>
<thead>
<tr>
<th></th>
<th>ORL</th>
<th>Yale</th>
<th>PCA+Mean Gabor</th>
<th>PCA+HRBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>73/47</td>
<td>73/47</td>
<td>75/43</td>
<td>74/47</td>
</tr>
<tr>
<td>2/3</td>
<td>73/47</td>
<td>73/47</td>
<td>75/43</td>
<td>74/47</td>
</tr>
</tbody>
</table>

1 Hierarchical Radial Basis Function
حمیدرضا قجر در سال ۱۳۸۴ در مقطع کارشناسی در رشته مهندسی کامپیوتر گرایش نرم‌افزار از دانشگاه تریپت مدرک نهان فارغ‌التحصیل شد کارشناسی ارشد خود را در رشته مهندسی فناوری اطلاعات و ارتباطات گرایش مخابرات این دانشگاه دریافت که نه نه انواع مختلف علائم پردازش تصویر می‌باشد.
تشانی رایانامه ایشان عبارت است از:

hamidghajar@live.com

عباس گوشاری تحصیلات خود را در مقطع کارشناسی در رشته مهندسی کامپیوتر گرایش سختافزار دانشگاه بهارستان به پایان رساند. وی مدیرک کارشناسی ارشد خود را در رشته مهندسی کامپیوتر گرایش هنری معمولی هکی که از دانشگاه صنعتی امیرکبیر تهران در سال ۱۳۸۴ اخذ کرده و هم اکنون دانشجوی دکتری دانشگاه علم و صنعت ایران در رشته مهندسی کامپیوتر گرایش هنری معمولی می‌باشد. زمینه‌های تحقیقاتی مورد علاقه ایشان پردازش سیگنال‌ها، تبدیل متن به گفتار، پردازش تصویر و ویدئو می‌باشد.
تشانی رایانامه ایشان عبارت است از:

koochari@iust.ac.ir

محسن سرمایی متولد ۱۳۳۵ در مشهد است. ایشان در رشته کارشناسی را در رشته مهندسی برق – الکترونیک در سال ۱۳۵۹ در دانشگاه علم و صنعت ایران به پایان رساند. در سال ۱۳۶۴ به پوری وزارت علوم، جهت ادامه تحصیل به ایران منتقل شد. مدیرک کارشناسی ارشد دکتری را به‌خاطر پردازش تصویر از رشته مهندسی الکترونیک با تخصص پردازش تصویر از دانشگاه هربرت-وات در شهر ادوینورگ اسکانداو اخذ نمود. وی در حال حاضر استادیار گروه ساختار دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت می‌باشد. زمینه‌های تحقیقاتی ایشان عبارتند از: مدل‌سازی، شبکه‌های مصنوعی و پردازش تصویر. تصاویر و ماهورهای مختلف، معماری نرم‌افزاری کامپیوتری و شبکه‌های متعددی و می‌باشد.
تشانی رایانامه ایشان عبارت است از:

soryani@iust.ac.ir

