طرحی و پیاده‌سازی سامانهٔ بیدرگان آشکارسازی و شناسایی پلاک خودرو در تصاویر ویدئویی

میرزا عبداللهی و حسین خسروی

چکیده
سامانه‌های شناسایی خودکار پلاک خودرو (ANPR) کاربردهای بسیاری در سامانه‌های نظام به‌ترفیکی و سامانه‌های کنترل عوارض جاده‌ای داردند. در این مقاله، الگوریتمی برای آشکارسازی و شناسایی پلاک خودرو در قابهای ویدئویی و شناسایی هیرزمان چند پلاک در یک قاب و ویدئوی طراحی و پیش‌سازی می‌کنیم. در قابلیت زمینه‌سنجی و شناسایی یک پلاک خودرو در یک صاعت، کارهایی صورت گرفته که در یک نرخ آن‌ها به دست داده‌گیر یک کویر، به‌طور کمی شده است: در حالت‌هایه کمال‌الاخلاق سرعت شناسایی پلاک‌ها به‌همراه آشکارسازی و شناسایی صحیح چند پلاک خودرو در صحنه برای کاربردهای آن، اهمیت بالایی دارد. بر خلاف روشنایی پاییزیکی محاسباتی بالا، ما روش‌های مؤثر و ساده‌ای را برای بیدرگان خودرو در کار کردهایی، روی پیش‌سنجی روی ویدئویی از دیگر نیازهای ارزیابی‌شده و پیش‌سنجی سرعت شده است. مانیفتیگرز زمان OpenCV ۹۹/۶ حاصل شد. این سامانه به زبان C++ و با استفاده از کتابخانه OpenCV ارائه شده است. هدایتی به‌گونه‌ای که در پردازش در مراحل الگوریتم ANPR، ممکن است بیشتری در تعداد کلردک خودرو، ممکن است به‌طور کامل باشد. در پردازش هر قاب در مرحله الگوریتم ANPR، ممکن است با تعداد کمترین زمان کلید کلر پردازش هر قاب چهل میلی‌ثانیه است که می‌تواند در کاربردهای بیدرگان استفاده شد. در این استفاده از الگوریتم از قبلاً ارائه شده داده و شناسایی کننده و پردازش زمانی از دیگر نیازهای ارزیابی‌شده می‌تواند ناحیه‌های سریالی می‌تواند به‌طور کامل باشد. در همین راستا، نتایج از این آزمایش‌ها نشان می‌دهد که روی و تغییر پیاده‌سازی ما نسبت به کارهایی که در گذشته، سرعت بالا می‌گردد آشکارسازی و پزشکسنجی پیشی‌گرفتگان دارد، طوری که آن را برای کاربردهای بیدرگان به‌سیناریو مناسب ساخته است.

و از اگزگی کلید: سامانه بیدرگان آشکارسازی و شناسایی پلاک خودرو، مدلهای مکانیکی کارهای، تحلیل اجزای متن نهایی، شبکه عصبی

Design and Implementation of Real-Time License Plate Recognition System in Video Sequences
Mitra Abdollahi & Hossein Khosravi
Department of Electronic, Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, IRAN

Abstract
An automatic Number Plate Recognition (ANPR) is a popular topic in the field of image processing and is considered from different aspects, since early 90s. There are many challenges in this field, including; fast moving vehicles, different viewing angles and different distances from camera, complex and unpredictable backgrounds, poor quality images, existence of multiple plates in the scene, variable lighting conditions throughout the day, and so on. ANPR systems have many applications in today’s traffic monitoring and tollgate systems.

In this paper, a real-time algorithm is designed and implemented for simultaneous detection and recognition of multiple number plates in video sequences. Already some papers on plate localization and recognition in still images have been existed, however, they do not consider real time processing. While for the related applications, real-time detection and recognition of multiple plates on the scene is very important. Unlike methods with high computational complexity, we apply simple and effective techniques for being real-time systems.

Corresponding author
تایم. ابتدا، پایه واقعی مدل کششی می‌باشد که در بررسی، جستجوی و زمان اجرایی این روش‌ها اعمال می‌شود. پایه واقعی مدل کششی می‌باشد که در بررسی، جستجوی و زمان اجرایی این روش‌ها اعمال می‌شود.

1. مقدمه

سامانه شناسایی خودکار شماره پلاک خودرو، سامانه‌ای برای خواندن پلاک ویژه تلفیق با استفاده از نویسخوان نوری است. شماره پلاک خودرو که از دسترسی به امکان اطلاعاتی جهت امرز هویت خودروها است. این سامانه به‌طور کلی فرحه و بدون استفاده از استارت پایه از سرگیری و تجهیز خودروها که به‌وسیله دیگری (مانند GPS یا پرچسب‌های رادیویی - RFID) مخصوصاً تصویری از خودروی در حال عبور از کنده و آن را جهت پردازش توسط نرم‌افزار تشخیص پلاک خودرو به راه اندازه ارسال می‌کند. این سامانه پلاک در زمینه‌های امنیتی و ترافیکی بسیار بهره‌وری نیست. با توجه به کاربردهای زیاد آن، روش‌های مختلفی برای اشکارسازی و شناسایی پلاک خودرو در مراجع مختلف آراهان شده است. [1] [2] [3] [4] و [5].

بطور کلی، سامانه شناسایی خودکار شناسایی پلاک خودروی از سه به‌⁄ًن اصلی تشخیص محل پلاک‌یابی بایستی رود و ANPR اشکارسازی پلاک، جداسازی توشی و شناسایی آن تشکیل شده است. راه‌حل‌یابی پلاک خودرو از روی تصویر پیچیده یک محل و محل‌دار، در مرحله نخست، محل پلاک در تصویر می‌شود و شناسایی ارقام و حروف پلاک در مرحله دوم می‌باشد. از آنجا که شناسایی ارقام و حروف پلاک مبتنی بر استخراج مولتی‌پلاک خودرو نتیجه نشده است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است.

2. Candidate regions

یک انواع ژمای دید مختلف دوربین، پسرزمینه پیچیده و اساساً گشتار شده، یکپارچه و پلاک‌بندی می‌باشد. به‌طور کلی، پلاک‌بندی در کنار تصویری از خودروی در حال عبور از کنده و آن را جهت پردازش توسط نرم‌افزار تشخیص پلاک خودرو به راه اندازه ارسال می‌کنند. این سامانه پلاک در زمینه‌های امنیتی و ترافیکی بسیار بهره‌وری نیست. با توجه به کاربردهای زیاد آن، روش‌های مختلفی برای اشکارسازی و شناسایی پلاک خودرو در مراجع مختلف آراهان شده است. [1] [2] [3] [4] و [5].

بطور کلی، سامانه شناسایی خودکار شناسایی پلاک خودروی از سه به‌⁄ًن اصلی تشخیص محل پلاک‌یابی بایستی رود و ANPR اشکارسازی پلاک، جداسازی توشی و شناسایی آن تشکیل شده است. راه‌حل‌یابی پلاک خودرو از روی تصویر پیچیده یک محل و محل‌دار، در مرحله نخست، محل پلاک در تصویر می‌شود و شناسایی ارقام و حروف پلاک در مرحله دوم می‌باشد. از آنجا که شناسایی ارقام و حروف پلاک مبتنی بر استخراج مولتی‌پلاک خودرو نتیجه نشده است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو نتیجه نخست است. لذا کارایی و دقت سامانه نتایج مبتنی بر استخراج پلاک خودرو N-43
مشخص می‌شود. ابزارهای آماده و مبتنی بر یادگیری ماشین، با توجه به ویژگی‌های مختلفی از تصویر را که نسبت به بررسی صورت، بهبود داده می‌شود و این گروه جهت یافتن مدل‌های پیشرفته‌تری شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

2- روش پیشنهادی

ساختار محوری و ظاهر handwritten با حکم به خصوصیات و ضروریت این مسئله برتری‌های مشخصی می‌باشد و ویژگی‌های مختلفی در جهت یافتن مدل‌های بهتری از در نظر گرفته شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

امروزه بیشتر ساختارهای شناسایی بلاک بهتر از قبل استفاده می‌شود. مثال دریچه‌ای وسیع با خصوصیات بالا و کم‌کم قرار داده می‌شود که شامل جهت یافتن مدل‌های بهتری از خصوصیات مربوط به خصوصیات شناسایی قبلی است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

مشخصی می‌شود. ابزارهای آماده و مبتنی بر یادگیری ماشین، با توجه به ویژگی‌های مختلفی از تصویر را که نسبت به بررسی صورت، بهبود داده می‌شود و این گروه جهت یافتن مدل‌های پیشرفته‌تری شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

2- روش پیشنهادی

ساختار محوری و ظاهر handwritten با حکم به خصوصیات و ضروریت این مسئله برتری‌های مشخصی می‌باشد و ویژگی‌های مختلفی در جهت یافتن مدل‌های بهتری از در نظر گرفته شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

امروزه بیشتر ساختارهای شناسایی بلاک بهتر از قبل استفاده می‌شود. مثال دریچه‌ای وسیع با خصوصیات بالا و کم‌کم قرار داده می‌شود که شامل جهت یافتن مدل‌های بهتری از خصوصیات مربوط به خصوصیات شناسایی قبلی است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

مشخصی می‌شود. ابزارهای آماده و مبتنی بر یادگیری ماشین، با توجه به ویژگی‌های مختلفی از تصویر را که نسبت به بررسی صورت، بهبود داده می‌شود و این گروه جهت یافتن مدل‌های پیشرفته‌تری شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

2- روش پیشنهادی

ساختار محوری و ظاهر handwritten با حکم به خصوصیات و ضروریت این مسئله برتری‌های مشخصی می‌باشد و ویژگی‌های مختلفی در جهت یافتن مدل‌های بهتری از در نظر گرفته شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

امروزه بیشتر ساختارهای شناسایی بلاک بهتر از قبل استفاده می‌شود. مثال دریچه‌ای وسیع با خصوصیات بالا و کم‌کم قرار داده می‌شود که شامل جهت یافتن مدل‌های بهتری از خصوصیات مربوط به خصوصیات شناسایی قبلی است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

مشخصی می‌شود. ابزارهای آماده و مبتنی بر یادگیری ماشین، با توجه به ویژگی‌های مختلفی از تصویر را که نسبت به بررسی صورت، بهبود داده می‌شود و این گروه جهت یافتن مدل‌های پیشرفته‌تری شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

2- روش پیشنهادی

ساختار محوری و ظاهر handwritten با حکم به خصوصیات و ضروریت این مسئله برتری‌های مشخصی می‌باشد و ویژگی‌های مختلفی در جهت یافتن مدل‌های بهتری از در نظر گرفته شده است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.

امروزه بیشتر ساختارهای شناسایی بلاک بهتر از قبل استفاده می‌شود. مثال دریچه‌ای وسیع با خصوصیات بالا و کم‌کم قرار داده می‌شود که شامل جهت یافتن مدل‌های بهتری از خصوصیات مربوط به خصوصیات شناسایی قبلی است. این استفاده از الگوی تعمیم گسترده‌تری در این روش می‌تواند به بهبود یافتن در نتایج نهایی منجر شود.
در این روش، یک پیکسل در زمانی به صورت ترکیبی از توزیع گاوسی مدل $	ext{GMM}$ و [19] به‌عنوان مقادیر نرمال و پیکسل در طول برای یک چهارم یکسان قاب، ذخیره و انحراف یک چهارم کشور گاوسی مقدار مناسب گسترش می‌کند. مقادیر $	ext{GMM}$ به میانگین و انحراف $	ext{GMM}$ به آن افزوده می‌شود. این اکتشاف به همین داده می‌آید.

(1) احتمال مشاهده مقدار فلک پیکسل در مادله (1) آمده است:

$$P(X_t) = \sum_{i=1}^{k} w_{it} \cdot \Phi(X_t; \mu_t, C_t)$$

(2) در اینجا w_{it} وزن مربوط به هر توزیع گاوسی است که بر اساس معنی داده‌باینی و در خروجی قرار می‌گیرد، $\Phi(X_t; \mu_t, C_t)$ مقادیر میانگین و واریانس گاوسی و GMM است که در معادله (2) آمده است.

$$\Phi(X_t; \mu_t, C_t) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} (X_t - \mu_t)^T C_t^{-1} (X_t - \mu_t)\right)$$

در تخمین پیش‌زمینه توسط چند توزیع گاوسی، هر پیکسل به صورت ترکیبی از چند توزیع گاوسی مدل $	ext{GMM}$ شود. جزئیات این روش در مقاله اگر استفاده در سال 1999 آمده است. برای طراحی یک پیکسل در طول زمان نشان داده شده است. لازم به ذکر است، در فعالیت

۱- تخمین پیش‌زمینه

وظیفه اصلی در سیستم‌های تصویری عبارت از تشخیص حرکت، طبقه‌بندی ۱-۰، در کلاسیفیک

۱- ۲- آشکارسازی پلاک

ANPR

استریز یا پیش‌بینی در معرض احتمال سنگین به سادگی و در این روش، یک پیکسل در زمانی به صورت ترکیبی

GMM و [19] به‌عنوان مقادیر نرمال و پیکسل در طول برای یک چهارم یکسان قاب، ذخیره و انحراف یک چهارم کشور گاوسی مقدار مناسب گسترش می‌کند. مقادیر $	ext{GMM}$ به میانگین و انحراف $	ext{GMM}$ به آن افزوده می‌شود. این اکتشاف به همین داده می‌آید.

(1) احتمال مشاهده مقدار فلک پیکسل در مادله (1) آمده است:

$$P(X_t) = \sum_{i=1}^{k} w_{it} \cdot \Phi(X_t; \mu_t, C_t)$$

(2) در اینجا w_{it} وزن مربوط به هر توزیع گاوسی است که بر اساس معنی داده‌باینی و در خروجی قرار می‌گیرد، $\Phi(X_t; \mu_t, C_t)$ مقادیر میانگین و واریانس گاوسی و GMM است که در معادله (2) آمده است.

$$\Phi(X_t; \mu_t, C_t) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} (X_t - \mu_t)^T C_t^{-1} (X_t - \mu_t)\right)$$

در تخمین پیش‌زمینه توسط چند توزیع گاوسی، هر پیکسل به صورت ترکیبی از چند توزیع گاوسی مدل $	ext{GMM}$ شود. جزئیات این روش در مقاله اگر استفاده در سال 1999 آمده است. برای طراحی یک پیکسل در طول زمان نشان داده شده است. لازم به ذکر است، در فعالیت

۱- تخمین پیش‌زمینه

وظیفه اصلی در سیستم‌های تصویری عبارت از تشخیص حرکت، طبقه‌بندی ۱-۰، در کلاسیفیک

۱- ۲- آشکارسازی پلاک

ANPR

استریز یا پیش‌بینی در معرض احتمال سنگین به سادگی و در این روش، یک پیکسل در زمانی به صورت ترکیبی

GMM و [19] به‌عنوان مقادیر نرمال و پیکسل در طول برای یک چهارم یکسان قاب، ذخیره و انحراف یک چهارم کشور گاوسی مقدار مناسب گسترش می‌کند. مقادیر $	ext{GMM}$ به میانگین و انحراف $	ext{GMM}$ به آن افزوده می‌شود. این اکتشاف به همین داده می‌آید.

(1) احتمال مشاهده مقدار فلک پیکسل در مادله (1) آمده است:

$$P(X_t) = \sum_{i=1}^{k} w_{it} \cdot \Phi(X_t; \mu_t, C_t)$$

(2) در اینجا w_{it} وزن مربوط به هر توزیع گاوسی است که بر اساس معنی داده‌باینی و در خروجی قرار می‌گیرد، $\Phi(X_t; \mu_t, C_t)$ مقادیر میانگین و واریانس گاوسی و GMM است که در معادله (2) آمده است.

$$\Phi(X_t; \mu_t, C_t) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} (X_t - \mu_t)^T C_t^{-1} (X_t - \mu_t)\right)$$

در تخمین پیش‌زمینه توسط چند توزیع گاوسی، هر پیکسل به صورت ترکیبی از چند توزیع گاوسی مدل $	ext{GMM}$ شود. جزئیات این روش در مقاله اگر استفاده در سال 1999 آمده است. برای طراحی یک پیکسل در طول زمان نشان داده شده است. لازم به ذکر است، در فعالیت

۱- تخمین پیش‌زمینه

وظیفه اصلی در سیستم‌های تصویری عبارت از تشخیص حرکت، طبقه‌بندی ۱-۰، در کلاسیفیک

۱- ۲- آشکارسازی پلاک

ANPR

استریز یا پیش‌بینی در معرض احتمال سنگین به سادگی و در این روش، یک پیکسل در زمانی به صورت ترکیبی

GMM و [19] به‌عنوان مقادیر نرمال و پیکسل در طول برای یک چهارم یکسان قاب، ذخیره و انحراف یک چهارم کشور گاوسی مقدار مناسب گسترش می‌کند. مقادیر $	ext{GMM}$ به میانگین و انحراف $	ext{GMM}$ به آن افزوده می‌شود. این اکتشاف به همین داده می‌آید.

(1) احتمال مشاهده مقدار فلک پیکسل در مادله (1) آمده است:

$$P(X_t) = \sum_{i=1}^{k} w_{it} \cdot \Phi(X_t; \mu_t, C_t)$$

(2) در اینجا w_{it} وزن مربوط به هر توزیع گاوسی است که بر اساس معنی داده‌باینی و در خروجی قرار می‌گیرد، $\Phi(X_t; \mu_t, C_t)$ مقادیر میانگین و واریانس گاوسی و GMM است که در معادله (2) آمده است.

$$\Phi(X_t; \mu_t, C_t) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} (X_t - \mu_t)^T C_t^{-1} (X_t - \mu_t)\right)$$

در تخمین پیش‌زمینه توسط چند توزیع گاوسی، هر پیکسل به صورت ترکیبی از چند توزیع گاوسی مدل $	ext{GMM}$ شود. جزئیات این روش در مقاله اگر استفاده در سال 1999 آمده است. برای طراحی یک پیکسل در طول زمان نشان داده شده است. لازم به ذکر است، در فعالیت

۱- تخمین پیش‌زمینه

وظیفه اصلی در سیستم‌های تصویری عبارت از تشخیص حرکت، طبقه‌بندی ۱-۰، در کلاسیفیک
بعد آنکه از مدل مخلوط گاوسی برای تخمین پیشینی استفاده کردیم، قابل‌های پیش‌زمینه به‌دنباله حذف شده و قابل‌های حاوی اطلاعات پیش‌زمینه بی‌پانزه باید به‌دست می‌آیند. قابل‌های حاوی پیش‌زمینه همان اسباب در حال حاضری که قابل‌های مطلوب هستند پیش‌زمینه و پیش‌زمینه یک قاب مطلوب در شکل (4) نشان داده شده‌اند که این با استفاده از آگری‌ریتم GMM به‌دست آمده‌اند.

1-2-2-کاهش نویه

همانطور که می‌شناسید، نویه‌های سیلی‌ور در قاب‌های مطلوب وجود دارد که برای حذف نویه‌ها ابتدا قاب‌ها را خاکستری کرده، سپس با استفاده از یک فیلتر میانگی نویه را کاهش می‌دهیم. فیلتر میانگی فیلتری است که بر روی هر عنصر سیگنال می‌روید و به پیکسل‌های همسایه تغییر می‌دهد (ابن پیکسل‌های همسایه در یک همسایگی مربی طرفی پیکسل ارزیابی شده) قرار گرفته‌اند. مثالی از یکی از بالانس این فیلتر در شکل (5) نشان داده شده است.

.Substring 1

3-3-3-1-1-1-یک‌هدف کیفیت تصویر

وقتی که قاب‌های ویدئو هیبرید هستند یا تضاد روش‌های مناسبی در آنها وجود ندارد، از آگری‌ریتم به‌ویژه تصویر استفاده می‌کنیم تا یکی از قاب‌ها را از لحاظ دهم. اگر قاب‌های پیش‌پردازی‌های داخلی این قاب می‌سازمیم که کیفیت تصاویر را به‌ویژه می‌گیرد. مشکل از یک یا کامل انتقال تغییر خلخلی است. انتخاب یک دنباله خمی باز برای اطلاعات هیستوگرام تصویر باشد. نویه‌ها که از این طریق تهیه می‌شود یا برای طراحی یک هیستوگرام جمع‌بسته کمتر از دو دنباله مجموع هیستوگرام می‌شود و یا با هم از جایی که هیستوگرام جمع‌بسته بیش از ۹۸ درصد مجموع هیستوگرام می‌شود، به‌عنوان نقاط شروع و

3) پیکسل‌های یک قاب مطلوب
4) اکستن دیسایز
5) درصد مجموع هیستوگرام

(Scale 1397 Shama 14 1388)
در برخی موارد، به‌عنوان مثال وقته که قاب‌های دویدن و تغییرات صدا و حالت بر روی سطح و سیر شده‌اند، عملکرد چهار منطقه‌ای را دارای مقدار بسیار بالا از پس‌زمینه‌های متفاوت از میدان‌های سطح دارد. به‌طور کلی، این عملکرد نیز سریع است؛ اما دقیقاً بیشتری از نتایج استانداردهای دارند و با گزینه‌های دویدن (4) برای کنترل، عمومی‌پیام‌های سایزی می‌شود.

$$g_x = \begin{bmatrix} -3 & 0 & +3 \\ -10 & 0 & +10 \\ -3 & 0 & +3 \end{bmatrix} \cdot I$$ \hspace{1cm} (4)

سبب لی‌های عمومی تشخیص داده می‌شوند و یک نقشه لی‌های دودویی ۱ با استاندارد انتخابی ۲ به‌دست می‌آید. مثالی از یک نقشه لی‌های دودویی در شکل (8) نشان داده شده است.

شکل (7): تشخیص لی‌های دودویی

شکل (8): یک نقشه لی‌های دودویی

این عملکرد سویل را به‌کار می‌برد و تغییرات احتمالی در محیط زیست نسبت به پس‌زمینه تعیین می‌کند. این عملکرد سویل را به‌کار می‌برد و تغییرات احتمالی در محیط زیست نسبت به پس‌زمینه تعیین می‌کند.

$$G_x = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} \cdot I$$ \hspace{1cm} (3)

ما این عملکرد سویل را به‌کار می‌بریم تا تغییرات احتمالی در محیط زیست نسبت به پس‌زمینه تعیین کنیم.

شکل (6): (الف) قاب کنترل است پایین

شکل (6): (ب) قاب پیشرفته

شکل (7): تشخیص لی‌های دودویی

شکل (8): یک نقشه لی‌های دودویی

شکل (9): تصویری با سطح مشخص روش روز پس‌زمینه است (شکل (7)).

شکل (10): تصویری با سطح مشخص روش روز پس‌زمینه است (شکل (7)).
عملیات گسترش، باعث می‌شود، نواحی روشن در یک تصویر رشد کند و عملیات سایی نواحی روشن در یک تصویر را نازک کنند؛ در حالی که مناطق تاریک بزرگتر می‌شوند. ابتدا در تصویر نواحی نامزد، از عمل گ و سایی با الگو ساخته‌ای ۳۲۳ استفاده و بعد از آن، روی تصویر حاشیه عملگر گسترش را با الگو ساخته‌ای ۲۲۰۲۲۳ اعمال می‌کنیم. این الگو عضوی از متغیرهای به‌صورت جبری به‌دست‌آمده‌اند.

شکل (۱۰) نتیجه این عملیات را نشان می‌دهد.

(الف) تصویر سایی نواحی نامزد
(a) An erosion image

(ب) تصویر حاشیه گسترش بعد از سایی
(b) A dilation image after erosion

(شکل-۱۰): نتیجه عملیات سایی و گسترش سمت‌یک
(Figure-10): The result of opening operation

۲-۱-۵ - تشخیص نواحی نامزد
نواحی نامزد، نواحی‌ای در هر قاب هستند که با یکی یا بیش‌تری حضور دارند. برای پیدا کردن نواحی نامزد، اکتشاف یا افکت‌های را بر روی تصویر نواحی لبه دودویی در زمان در اکتشاف افکت‌های سطحی در هر سطح تصویر و رسم نمودار به‌دست می‌آید. به‌دست‌آید به‌صورت یک نمودار نواحی می‌شود که در دامنه منحنی‌ای اکتشاف افکت وجود دارد. اکتشاف افکت‌های یا فیلتر میانگین گیری نمودار می‌شود. به‌دست‌آید از ان بیشتر اکتشاف افکت‌های نرمال‌تر می‌شود. سطح‌های از نتایج‌های لبه دودویی حذف می‌شود که نتایج مقدار اکتشاف افکت‌های نرمال‌تر از پانه‌ها در دسته بندی به‌صورت است. به‌صورت نمودار (۹) به‌دست‌آید. این یک مروبی به‌صورت مسئله‌ای است که بر مبانی همسایگی‌های چهارتایی یا هشت‌تایی، مسئله‌ای به‌هم پیوسته را پیدا می‌کند.

(شکل -۹): تشخیص نواحی نامزد
(Figure-9): Candidate regions detection

۲-۱-۶ - عملیات مورفولوژی
عملیات مورفولوژی، عملیاتی هستند که تصویر را بر مبنای شکل‌های خاص پدراش می‌کنند. آنها یک الگوی ساختاری را بر روی تصویر ورودی تغییراتی را به‌دست‌آورده‌اند.

یکی از این عملیات مورفولوژی، مدل‌سازی بر روی تصویر ورودی است. مدل‌سازی مورد این عملیات، مدل‌سازی خودکار (CCA) است که بر مبنای همسایگی‌های چهارتایی یا هشت‌تایی، مسئله‌ای به‌هم پیوسته را پیدا می‌کند.

بعد از عملیات گسترش، الگوی متناسب با نواحی می‌شود. این الگوی با توجه به نسبت ابعاد پلاک‌ها و اندازه آنها کنترل و پلاک‌ها اشکال‌سازی می‌شوند. اکتشاف یا گسترش خودرو بر مبنای وضوح یا گسترش خودرو با و به‌صورت پیش‌نهادی نواحی دیورس و وسایل نقلیه می‌شود. شکل‌های (۱۱) و (۱۰) تصویر خوشه‌ای از نواحی استخراج‌شده را به‌صورت پیش‌نهادی نشان می‌دهند.

4 Dilatation
5 Opening
6 Connected Components Analysis (CCA)
7 Resolution

۱ Projection
۲ Moving Average Filter
۳ Erosion

سال ۱۳۹۷ شماره ۴ پاییز ۳۸
(شکل-14): روش پیشنهادی برای پیدا کردن پلاک‌هایی که به دو جزء تقسیم می‌شوند. تحلیل اجزای متشکل به هم با انجام داده و توضیحاتی پلاک را جدا کرده. عکس کار در مثال شکل (18) آورده شده است.

۲-۲ جداسازی نویسه‌های پلاک

نماهایی از روش به کار گرفته شده در این بخش در شکل (۱۳) نشان داده شده است.

(شکل-12): مثال هایی از نواحی غیر پلاک استخراج شده

(شکل-11): مثال هایی از نواحی پلاک استخراج شده

(شکل-13): روش پیشنهادی در بخش جداسازی

(شکل-15): چارکه‌سازی پلاک

(شکل-16): نمای کلی پلاک‌های نقطه‌ای از شناسایی ارقام پلاک نشان داده شده است.

(شکل-17): مجموعه داده

imbin(x,y) = \begin{cases} 1 & \text{if imgray(x,y) ≤ 0.95 imblurred} \\ 0 & \text{otherwise} \end{cases} \quad (5)

1 blurring
همه پلاک‌ها کلمه ای بر این با قلم کوچکی نوشته شده است که بهطور معمول در طول شناسایی پلاک به‌دلیل اندوزان کوچکش حذف خواهد شد. نسبت ابعاد همه پلاک‌ها در حدود 10 به در و ابتدا و پرچم ایران هم در بالای سمت چپ پلاک‌ها قرار دارد.

(جدول-1): مثال‌هایی از نمونه‌های آموزش

<table>
<thead>
<tr>
<th>نام</th>
<th>نمونه</th>
<th>کلاس</th>
<th>نام</th>
<th>نمونه</th>
<th>کلاس</th>
<th>نام</th>
<th>نمونه</th>
<th>کلاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>gh</td>
<td>20</td>
<td></td>
<td>A</td>
<td>10</td>
<td></td>
<td>B</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>21</td>
<td></td>
<td>P</td>
<td>12</td>
<td></td>
<td>T</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>22</td>
<td></td>
<td>J</td>
<td>15</td>
<td></td>
<td>S</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td></td>
<td>C</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td></td>
<td>D</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>25</td>
<td></td>
<td>E</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>26</td>
<td></td>
<td>F</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>29</td>
<td></td>
<td>G</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: مثال‌هایی از نمونه‌های آموزش

(1) Histograms of Oriented Gradients (HOG)

۲-۳- استخراج ویژگی

بعد از فراهم کردن نمونه‌های آموزش، با استفاده از HOG، می‌توانیم تا گرایش‌های تصویر در راستای x و y به‌دست آوردیم.

\[
G_x = I * D_x
\]

\[
G_y = I * D_y
\]

در روابط (6) و (7) I تصویر اصلی، D_x و D_y کانون‌های هستند که در x و y بافت شده‌اند، سپس با توجه به هر هر نقطه i,j در راستای x و y و علامت $*$ عمل کانون‌شناسی را نشان می‌دهد، سپس ابتدای هر گرایش را به گرایش‌های x و y تبدیل می‌نمایم.

\[
I(i,j) = \sqrt{(G_x(i,j))^2 + (G_y(i,j))^2}
\]

\[
\theta_g(i,j) = \tan^{-1}\left(\frac{G_y(i,j)}{G_x(i,j)}\right)
\]

(9)

که θ_g ابتدای گرایش را نشان می‌دهد. بنابراین به گرایش‌های تصویر HOG تبدیل می‌شود و به‌طور جامعه‌ای به‌دلیل تغییر در هر نقطه i,j در هر گرایش، بازیابی گرایش‌های تصویر HOG می‌شود.

۳- استخراج ویژگی
نتایج تجربی

1- نتایج آشکارساز پلاک خودرو

آزمایش‌ها با دو نوع پایه داده‌های ويژن و دوخته‌دیده انجام شده‌اند. این ويژن‌ها شامل 498 قطعه پلاک خودروی فارسی در شرایط مختلف از دوربین‌های زنگ‌پردازی روبرو، و ضوایع قطعه‌های 950 x 300 تا 120 x 100 بی‌پیسل متقابل بود. روش پیشنهادی وب‌پردازش قطعه‌های توان‌های هم‌پاک‌ها را در قطعه‌های پلاک خودروی با 50% مقدار درصد تنظیم شده است. تنظیم پلاک‌ها سودجو 99% است و با آن چکی که بیشتر قطعه‌های وب‌پردازش پلاک‌های تکراری هستند. آن‌ها در بستر بلوک ما به صورت یک مدیریت اختیاری داده می‌شوند. بهترین قطعه‌ها در بردار سیستم در وب‌پردازش دستگیرم در یک قطعه از قطعه‌ها باعث شد است. خواهد شد.

شکل 17: نشان دهنده شماره اندازه‌ها در یک بلوک است.

2- آزمایش‌های در این مراحل که برای نمونه‌های آزمایش‌های بر اساس روش گزارش‌های ویژگی تایید می‌شود.

3- آزمایش‌های در این مراحل که برای نمونه‌های آزمایش‌های بر اساس روش گزارش‌های ویژگی تایید می‌شود.

شکل 18: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

4- آزمایش‌های در این مراحل که برای نمونه‌های آزمایش‌های بر اساس روش گزارش‌های ویژگی تایید می‌شود.

شکل 19: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 20: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 21: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 22: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 23: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 24: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 25: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 26: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 27: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 28: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 29: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 30: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 31: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 32: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 33: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 34: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 35: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 36: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 37: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 38: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 39: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 40: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 41: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 42: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 43: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 44: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 45: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 46: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 47: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 48: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 49: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.

شکل 50: شکل 17 نشان دهنده شماره اندازه‌ها در یک بلوک است.
درصد قابل قبولی برای آشکارسازی پلاک دارد. همچنین می‌تواند در هر قاب ویدئویی و پلاک را تشخیص داده و انواع پلاک‌ها را شناسایی کند.

است. با این وجود، مقایسه درصد آشکارسازی پلاک و زمان اجرای روشنایی با کاربرد قبیل در جدول (4) ارائه می‌دهم. همانطور که در این جدول مشاهده می‌کنید، روشن پیشنهادی نسبت به روش‌های قبل، زمان اجرای کوتاه‌تر و

(شکل-17): مثال‌هایی از آشکارسازی پلاک در قاب‌های ویدئو

(Figure-17): Examples of LPL in video sequences
شکل 18: مثال‌ها از آشکارسازی چند پلاک در یک قاب
(Figure-18): Examples of multiple LP detection in one frame

جدول 2: مقایسه روش پیشنهادی با کارهای قبلی در زمینه آشکارسازی پلاک
(Table-2): Comparison of the proposed method with previous works in LPL

<table>
<thead>
<tr>
<th>زمان آشکارسازی (سی)</th>
<th>درصد تشخیص پلاک</th>
<th>چندپلاکه</th>
<th>وضع</th>
<th>روشهای قبلی</th>
<th>روش‌های قبلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200 ms</td>
<td>93.99%</td>
<td>-</td>
<td>-</td>
<td>1280x1024</td>
<td>Chen et al. 2017</td>
</tr>
<tr>
<td>3000 ms</td>
<td>96.5%</td>
<td>-</td>
<td>-</td>
<td>1024x768</td>
<td>Li et al. 2017</td>
</tr>
<tr>
<td>2560 ms</td>
<td>99.4%</td>
<td>-</td>
<td>-</td>
<td>640x460</td>
<td>Rezaghorbani et al. 2009</td>
</tr>
<tr>
<td>2000 ms</td>
<td>92%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yu et al. 2012</td>
</tr>
<tr>
<td>2000 ms</td>
<td>88%</td>
<td>-</td>
<td>-</td>
<td>640x480</td>
<td>Elhamaini and Ahmed 2016</td>
</tr>
<tr>
<td>800 ms</td>
<td>93%</td>
<td>-</td>
<td>-</td>
<td>640x480</td>
<td>Zhang et al. 2006</td>
</tr>
<tr>
<td>650 ms</td>
<td>98%</td>
<td>-</td>
<td>-</td>
<td>800x600</td>
<td>Duan et al. 2004</td>
</tr>
<tr>
<td>400 ms</td>
<td>97%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Deb et al. 2009</td>
</tr>
<tr>
<td>300 ms</td>
<td>99.3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anagnostopoulos et al. 2006</td>
</tr>
<tr>
<td>200 ms</td>
<td>98%</td>
<td>-</td>
<td>-</td>
<td>768x256</td>
<td>Lee et al. 2007, Wang et al. 2007</td>
</tr>
<tr>
<td>180 ms</td>
<td>97.33%</td>
<td>-</td>
<td>-</td>
<td>400x500</td>
<td>Shi et al. 2005, Wang et al. 2011</td>
</tr>
<tr>
<td>111 ms</td>
<td>96.5%</td>
<td>-</td>
<td>-</td>
<td>768x534</td>
<td>Hamidi et al. 2003, Sarfraz et al. 2003</td>
</tr>
<tr>
<td>100 ms</td>
<td>99.6%</td>
<td>-</td>
<td>-</td>
<td>360x288</td>
<td>Lee et al. 2004, Hamidi et al. 2004</td>
</tr>
<tr>
<td>75 ms</td>
<td>94.4%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sarfraz et al. 2013</td>
</tr>
<tr>
<td>25 ms</td>
<td>98.79%</td>
<td>✓</td>
<td>-</td>
<td>1280x720</td>
<td>انواع پلاک</td>
</tr>
</tbody>
</table>

روش پیشنهادی

روش پیشنهادی

نتایج پازشیایی ارقام پلاک

پس از اموزش سامانه به آزمایش آن بر روی ویدئوهای مختلف پرداختی و درصد پازشیایی ارقام پلاک به ترتیب 96/83 درصد نسبت به کارهای پیشین و درصد پازشیایی بهترین در نتایج طراحی و با پایداری این سامانه در درصد (3) هنال داده است. مانند قسمت قبل. می‌پرسی درصد پازشیایی پلاک و زمان اجرای کلی الگوریتم مان را با برخی کارهای گفته‌شده در جدول (3) آن‌ها را کنیم.
(Figure-19): Examples of License plate recognition in video sequences
جدول ۳: مقایسه روش پیشنهادی با کارهای گذشته

<table>
<thead>
<tr>
<th>روش ها</th>
<th>تتو قطعات</th>
<th>وضع</th>
<th>نوع پلاک</th>
<th>درصد پراورانی</th>
<th>زمان کل پردازش هر قاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang و همکاران، ۲۰۱۰</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱۵ سیکل</td>
</tr>
<tr>
<td>Chang و همکاران، ۲۰۰۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳.۱۲ سیکل</td>
</tr>
<tr>
<td>رستگار و همکاران، ۲۰۰۹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۲.۷ سیکل</td>
</tr>
<tr>
<td>Jo و Deb و همکاران، ۱۹۹۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۲.۴ سیکل</td>
</tr>
<tr>
<td>Naito و همکاران، ۲۰۰۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱.۱ سیکل</td>
</tr>
<tr>
<td>Duan و همکاران، ۲۰۰۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۰.۷۵ سیکل</td>
</tr>
<tr>
<td>Duan و همکاران، ۲۰۰۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۰.۶۵ سیکل</td>
</tr>
<tr>
<td>Shi و همکاران، ۲۰۰۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۰.۲۷۶ سیکل</td>
</tr>
<tr>
<td>Naito و همکاران، ۲۰۰۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۰.۰۶ سیکل</td>
</tr>
<tr>
<td>خسروی، ۲۰۱۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۰.۰۴ سیکل</td>
</tr>
</tbody>
</table>

۵- مراجع

[۴] می‌تواند در کنار سایر روش‌های تشخیص ماهی‌گونگی و تشخیص اضطراب در گوشی‌های هوشمند و پردازشگر داده‌های ورودی مورد استفاده قرار گیرد.

[۵] این روش می‌تواند به عنوان یک آنالیز ازدحام زمانی در شبکه‌های اینترنتی استفاده شود.

متینا عبداللهی مولد سال ۱۳۷۰
است. وی مدرک کارشناسی خود را در رشته مهندسی برق - اطلاعاتی از دانشگاه صنعتی شهید رجایی در سال ۱۳۹۲ و مدرک کارشناسی ارشد خود را با درجه بالا در رشته مهندسی برق - الکترونیک (سیستم) از دانشگاه صنعتی شهید رجایی در سال ۱۳۹۴ دریافت کرده است. اینچنین از سال ۱۳۹۶ دانشجوی دکتری مهندسی برق - الکترونیک در دانشگاه صنعتی شهید رجایی است. زمیمهای پژوهشی وی پردازش تصویر، شناسایی الگو، بیانی ماسی و شبکه های عصبی است.
نشانی رایانامه ایشان عبارت است از:

abdollahi370@yahoo.com

حسین خسروی در سال ۱۳۸۲ مدرک کارشناسی خود را در رشته الکترونیک از دانشگاه صنعتی شریف دریافت کرده است. در سال ۱۳۸۴ در مقطع کارشناسی ارشد الکترونیک سیستم از دانشگاه تربیت مدرس فارغ التحصیل شد و در سال ۱۳۸۷ در همان دانشگاه مدرک دکتری الکترونیک را اخذ کرد. اینچنین از سال ۱۳۸۸ علم فیزیک دانشگاه صنعتی شهید رجایی و از سال ۱۳۹۴ مدیر عامل شرکت شهاب (فعال در حوزه پردازش تصویر) است. حوزه پژوهشی وی پردازش تصویر، بیانی ماسی، شناسایی الگو و فیزیک است.

نشانی رایانامه ایشان عبارت است از:

hosseinkhosravi@shahroodut.ac.ir

شماره ۳۸ یرادار
سال ۱۳۹۷
۴ یک‌پایه