یادگیری نیمه‌نظراتی کرنل مربوط به استفاده از روش‌های یادگیری معیار فاصله

طاهره زارع بیدکی، محمدتقی صادقی و حمیدرضا ابوطالبی

گروه تحقیقاتی پردازش سیگنال، دانشکده مهندسی برق، دانشگاه پردیس و برد، ایران

چکیده

معیار فاصله، نقشی کلیدی در بسیاری از الگوریتم‌های آموزش و شناسایی آماری از جمله کاربردهای کرینلدار بوده‌است. این الگوریتم‌ها در راستای الگوریتم‌های فاصله‌های مرسوم از قبیل FRL نشان‌دهنده‌ی رابطه‌ای وابسته به فضای ویژگی هستند. برخی از الگوریتم‌ها از چنین رابطه‌هایی برای تعیین فاصله و سپس در این فضای ویژگی هدف‌ور می‌باشند که می‌تواند به بهبود عملکرد کرینل‌های مورد نظر منجر شود.

می‌توان آن‌ها را از دو نوع تحلیلی دانست: در این نوع، تأثیر مستقیمی بر عملکرد الگوریتم‌ها دارد. در سال‌های اخیر، الگوریتم‌های فاصله‌ای با استفاده از میانه‌های برچسب‌دان و یا دیگر اطلاعات موجود، یکی از جنبه‌های بررسی تأثیر فاصله آموزشی شده است. یکی از این راستا، تأثیر داده‌ها که می‌تواند خطای کرینل‌های میانه‌برداری‌های غلط داشته باشد. در این نوع، تأثیر مستقیمی بر عملکرد الگوریتم‌ها دارد. در سال‌های اخیر، الگوریتم‌های فاصله‌ای با استفاده از میانه‌های برچسب‌دان و یا دیگر اطلاعات موجود، یکی از جنبه‌های بررسی تأثیر فاصله آموزشی شده است. یکی از این راستا، تأثیر داده‌ها که می‌تواند خطای کرینل‌های میانه‌برداری‌های غلط داشته باشد.

روش‌های یادگیری معیار فاصله

Semi Supervised Multiple Kernel Learning using Distance Metric Learning Techniques

Tahereh Zare*, Mohammad Taghi Sadeghi and Hamid Reza Abutalebi

Signal Processing Research Group, Electrical Engineering Department, Yazd University, Yazd, Iran

Abstract

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown that distance metric learning-
بنا برای که از ماده اتمیک تکنیک بهینه نمونه های متعلق به دسته‌های مختلف با استفاده از این معیار قابلیت ویژگی کاربردهای استفاده کرده‌ایم. البته است که تغییر معیار قابلیت می‌تواند باعث افزایش ویژگی‌های مختلف باشد. برای شرایط گزارشی موجود، می‌توان از سه گروه یادگیری معیار قابلیت نظارتی، نیم‌ناظرتی و بدون نظارت تقسیم‌بندی کرده [5] در دسته‌گروه‌های نظارتی، پژوهش‌های گسترش‌های برای آموزش معیار قابلیت در طبقه‌بندی کننده

3 Unsupervised method

1 k-nearest neighbor
2 Supervised method
اگر کیمیای آزمایش می‌تواند تا معیار فاصله مناسبی را تعیین کند، به‌طور کلی که فاصله میان زوج نمونه‌ها گمک و از طرف فاصله میان زوج نمونه‌ها نامشته باشد. بر همین اساس، در [16] یک گروه آزمایشی Mahalanobis تکراری برای آزمایش ماتریس تکراری که با دندان‌زننده می‌شود. در [17] یک کیفیت آزمایشی RCA (زئولیت مربوط به چین) در رشته‌های کاربردی محیطی و در ارائه می‌شود که فاصله میان کد زئولیت تکراری می‌باشد. این نمونه‌ها با سایر ترکز تکراری که با دندان‌زننده می‌شود. این نمونه‌ها با سایر ترکز تکراری که با دندان‌زننده می‌شود. این نمونه‌ها با سایر ترکز تکراری که با دندان‌زننده می‌شود.
نژادیکردن همسایه استفاده می‌شود. از یک گرایش کریلیک برای یادگیری نرم‌افزار مهندسی استفاده شده است. در [25] نیز با دو گرایش مثبت و منفی گرایش کریلیک، از یک گرایش یادگیری معاین‌شده با فرمول زیر کریلیک ها استفاده شده است. در [26] نیز با دو گرایش منفی از این گرایش کریلیک که شامل جمع و زن می‌باشد و در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

کریلیک مثبت یا منفی با توجه به میزان اهداف و موانع شرایط مختلفی در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.

در دو کاربرد مختلف مورد استفاده قرار گرفت.
را این چنین می‌توان تفسیر کرد که به یک از مجموع‌های محور یا مختصات (هر یک از فضای ورودی) وین انتخابی هم‌تراکنش با آن در ماتریس طاقی P اعمال می‌شود بعضاً ماتریس P اصلی به خاطر فضاهای Mahalanobis را خواهد ساخت. از طرفی در ماتریس P را به فضای \(R^d \) دبیر، ماتریس قطری P اکثر می‌توان را چنین تفسیر کرد که برای این نمونه ورودی X با از بین بردن یک مقدار چگونه سپس فضای قدرتی در فضای علیه عکس جداشده اعمال می‌شود که این انتخاب منجر به نتایج مثبت A \(= \frac{1}{n} \sum_{i=1}^{n} x_i y_i \) می‌شود.

بعدها می‌آید که در ماتریس تلفیقی با تغییرات \(\frac{1}{n} \sum_{i=1}^{n} x_i y_i \) قادیدن گوناگونی بر روی زوج‌های مشابه و نامناسب، بیابیادگیری ماتریس تلفیقی A ارائه شده است. در این مقاله، تمرکز عمیق بر روی یادگیری ماتریس کریل بهبودی به جای اینکه تلفیقی کریل می‌تواند در ماتریس فصلی است. برای این منطق در یک‌میدان مشابه باید به صورت معرفی تابع کریل و الگوریتم یادگیری کریل محک خواهیم پرداخت.

3- یادگیری کریل مربوط

کلمه کریل به معنی رعایتی در ریاضیات و علم امار به عنوان یک کد نوین مناسب است. این ایجاد کریل در فضای X از اکثریت نوع نمونه به صورت یک مقدار بهینه است. تجربه کریل در محدوده می‌خواهد که فضا X از اکثریت نوع نمونه به صورت یک مقدار بهینه است.

فرم کننده X = \(\{x\} \) مجموعه نمونه‌های آموزشی باشند. به‌گونه‌ای که \(N \times p \) تعداد نمونه‌های آموزشی N \(e \) را پیدا کرده و بعد بر اساس طبقه‌بندی نمونه‌های آموزشی از این مجموعه، مجموعه زوج‌های مشابه که برای مربوط به فضای همبستگی است به‌صرفه زیر نیاز داده می‌شود:

\(S = \{ (x_i, x_j) | x_i \text{ and } x_j \text{ belong to the same class} \} \)

و مجموعه زوج‌های نامناسب، مربوط به فضای غیره است است به‌صرفه زیر نیاز داده می‌شود:

\(D = \{ (x_i, x_j) | x_i \text{ and } x_j \text{ belong to different classes} \} \)

حال فرض کنید ماتریس میزان فصلی فضای به‌وسیله X نشان داده شود. در این صورت مربع فصلی بین دو نمونه \(x \) و \(y \) به‌صورت زیر محاسبه شود:

\(d^2 (x, y) = \| x - y \|^2 = (x - y)^T A (x - y) \)

در رابطه با اگر A = 1 \(I \) ماتریس کایکاسته است. در این صورت میزان فصلی بین دو نمونه \(x \) و \(y \) به‌صورت یک ماتریس قطری از مقادیر برای مربوط به داده‌های ورودی در نظر گرفته شود. خواهد بود رابطه فصلی بین دو نمونه \(x \) و \(y \) به‌صورت کاک است. به‌وسیله کاک A اگر ماتریس قطری باشد، رابطه فصلی بین دو

1 Kernel Trick
تولید کرنل مركب با استفاده از ترکیب توابع مختلف کرنل و یا به عبارتی به صورت

کرنل مختل:

 مختلف را می‌توان معادلی با معیارهای منطقی برای سنجش شباهت داده‌ها دانست. در این صورت به جای جستجو برای پیداکردن تابع کرنل که بهترین نمایشی از شباهت میان نمونه‌ها را ارائه می‌دهد، می‌توان از یک الگوریتم یادگیری برای انتخاب و یا ترکیب توابع مختلف (نمایش‌های مختلف از شباهت) استفاده کرد. در این حالت کرنل‌های پایه ممکن است توابع مختلفی مانند کرنل گوسی، خطي و چندجمله‌ای باشد و یا توابع کرنل با استفاده از یک نوع تابع کرنل و عناوین یا متغیرهای مختلف

می‌تواند کرنل گوسی، اما به‌دستای محقق‌رانی رابطه مختلف تولید شود. رتبه‌ی اسپرسون بای توابع کرنل پایه می‌تواند به همان‌سانی دلیل انتخاب شده است.

تولید کرنل مركب با استفاده از منابع ورودی مکانیک و به‌بینانه به صورت

کرنل مختلف ممکن است به واسطه نمایش‌های مختلف داده‌ها ناشی از منابع ورودی مختلف و یا مدل‌های مختلف ایجاد شوند و از آنجا که در نمایش‌های مختلف داده‌ها از عناوینی شباهت مناسب مستند است و در نتیجه کرنل مختل استفاده می‌شود، در این حالت ترکیب کرنل‌های مختلف راه برای ترکیب منابع مختلف استفاده استفاده از بالاترین

می‌تواند به صورت زیر تعریف می‌شود [22]:

که در اینجا

م تابع کرنل پایه به عنوان کرنل‌های پایه (تابع کرنلولوی) در نظر گرفته شده و تابع ترکیب

اثر کرنل‌ها است که می‌تواند خصیت و یا بررسی

کرنل‌های پایه باشد. با توجه به تعیین ارتباط برای کرنل

مرکب در رابطه (4)، کرنل مركب را می‌توان به دو روش

با دو هدف ساخت [23]:

ورزشی نطق‌های در فضای اولیه و اعمال تابع کرنل پایه‌سازی کرنل کرنل:

\[k : X \times X \rightarrow \mathbb{R}^+ \times \mathbb{R} \rightarrow \mathbb{R} \]

شده یک کرنل که در اینجا از توابع مختلف کرنل استفاده شده است. در این مقاله، ما از مدل‌های یادگیری میانه،

به‌فعل، برای یادگیری کرنل مركب در یک ترکیب خطي،

استفاده می‌کنیم. در پیش آمده به توضیح روش‌های

بررسی شده برای این منظور خواهیم پرداخت.

سال ۱۳۹۶ شماره ۱ پاییز
نام: طورکه درفلک اشاره شد، ارتباط نگاشته‌ی میان

یادگیری ماتریسی کرزل و یادگیری معيار فاصله

در این مقاله، برای ادامه مفاهیم یادگیری کرزل

و یادگیری معيار فاصله، چهار مسأله نیم‌نظری مختلف که در آنها توابع هزینه متناوبی لحاظ شده است، ارائه و در

کاربرد خوش‌نمودی مورد ارزیابی واقع می‌شوند.

فرض کنید $X=\{x_1, x_2,..., x_N\} \subseteq \mathbb{R}^d$ باشد که N عدد کل نمونه‌های اصلی است. مجموعه N نمونه‌های اصلی می‌تواند به صورت روابط

D, R, N و \mathbb{R}^d در دسترس است. به‌گونه‌ای که

در اینجا D, R و \mathbb{R}^d باید بیان نمایند.

از مجموعه‌ای \mathcal{K} نسیم که یکی کرزل در کل پیاده‌سازی‌ها به صورت تک‌پایه کرزل یا به صورت زیر در نظر گرفته می‌شود:

$$K_m = \sum_{n=1}^{N} \beta_n \mathbb{K}_n$$

(5)

که در رابطه بالا می‌باشد. $eta_n$ و مربوط به کرزل

برای سادگی نموی کلی از نسیم کرزل

مرکز در چارچوب مسئله یادگیری معيار فاصله در شکل (1)

نگاشت داده شده است.

در ادامه جزئیات هر نسیم پیشنهادی بی‌رسی می‌شود.

4-1 ساختار پیشنهادی:

در این ساختار، برای تعیین مقدار بی‌رسی وزن کرزل‌ها، β_n به‌صورت زیر در نظر گرفته می‌شود:

$$\min \frac{1}{2} \sum_{(k,j) \leq s} \| \Phi(x_k) - \Phi(x_j) \|^2$$

$$s.t. \quad \sum_{(k,j) \leq s} \| \Phi(x_k) - \Phi(x_j) \|^2 \geq c$$

$$\sum_{m=1}^{M} \beta_n = 1$$

$$\beta_n \geq 0 \quad \forall \quad m=1,2,..,M$$

سال 1396 شماره 1 یا ب.

\[
L = \frac{1}{|S|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j)
\]

\[= \frac{1}{|P|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j) - c \]

\[= \frac{1}{|S|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j) - c \]

\[= \frac{1}{|S|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j) - \beta_1 \frac{1}{|P|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j) - c \]

\[\sum_{m=1}^{M} \beta_m = 1 \]

\[
\hat{\beta} \geq 0 \quad \forall m = 1, 2, \ldots, M
\]

که در رابطه بالا e_i، تابع نامشخصی b_n، و α بوده و α، و β مقدار ویژه را دارند.

\[
a_n = \frac{1}{|S|} \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j)
\]

\[
b_n = \frac{1}{|P|} \sum_{(x_i, y_i, y_j)} \left(e_i - e_j \right)^T K_n(x_i, x_j)
\]

\[
\min a^T \beta \geq c, \quad \beta \geq 0
\]

\\

که تابع خطی خاصیت یکتایی است و از روش های محلی Simplex قابل حل است [29].

\\

\[\text{(Figure 1): The flowchart of multiple kernel learning method in the distance metric learning framework} \]

\[\text{که در اینجا مدل در بردار ویژگی متغیرین با کرمل کرمل K_p است.}\]

\[\text{همچنین c یک مقدار ثابت است و متغیر b به تغییر مقدار 1 و یا 0 می‌تواند باشد. به همان‌طور که دیده می‌شود،}\]

\[\text{علائم بزرگ‌تر از 1 در واقع کرمل شدیدی می‌باشد. در این این باعث به‌طور گرفتار حفظ توابع داده‌گرفته در فضای اولیه استفاده شده و فیلترهای مستقلهای داده است.}\]

\[\text{که با یک دادههای بیشتر می‌تواند باعث خواهند شد که متغیر c متوسط فاصله میان رشته‌های مشابه به کمیته به تابع α متوسط فاصله میان رشته‌های نامشابه از یک حدود در اینجا c است.}\]

\[\text{شون نسبت به الگوریتم به نسبت باعث شده است.}\]

\[\text{با به استفاده از یکی از دو عبارت زیر خواهیم بود:}\]

\[L = \frac{1}{|S|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left((K_n)_x + (K_n)_y - (2K_n)_y \right) \]

\[= \alpha \left[\frac{1}{|P|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left((K_n)_x + (K_n)_y - (2K_n)_y \right) - c \right] \]

\[= \frac{1}{|P|} \sum_{m=1}^{M} \beta_m \sum_{(x_i, y_i, y_j)} \left((K_n)_x + (K_n)_y - (2K_n)_y \right) - c \]

\[\sum_{m=1}^{M} \beta_m = 1 \]

\[
\hat{\beta} \geq 0 \quad \forall m = 1, 2, \ldots, M
\]

\[\text{که در رابطه بالا α, β, و γ ضرایب الگوریتم هستند.}\]

\[\text{با ساده‌سازی رابطه بالا خواهیم داشت:}\]

\[\text{سال 1396 شماره 1 بیایی 31}\]
بجا یافتن یک مورد بررسی قرار می‌گیرد. بنابراین:
\[
\min \frac{1}{|S|} \sum_{(x_i, y_i) \in S} \| \phi(x_i) - \phi(x_i') \|_2^2
\]
\[
+ \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \| \phi(x_i) - \phi(x_j) \|_2^2 W_{ij}
\]
\[
\text{s.t.} \quad \| \phi(x) - \phi(x') \|_2^2 \geq c, \forall (x_i, y_i) \in D
\]
\[
\sum_{i=1}^{M} \beta_i = 1
\]
\[
\beta_i \geq 0, \forall m = 1, 2, \ldots, M
\]
در اینصورت، تابع لایه‌ای به صورت زیر خواهد بود:
\[
L = \frac{1}{|S|} \sum_{(x_i, y_i) \in S} \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y) \right]
\]
\[
+ \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] W_{ij}
\]
\[
- \sum_{(x_i, y_i) \in D} \rho_i \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] W_{ij}
\]
\[
- \lambda_2 \left[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} \left((K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] \right] - c \right]
\]
\[
- \lambda_2 \left[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} \left((K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] \right] - c \right]
\]
\[
\text{به منظور کلی داده‌ها در نظر گرفتن شده و بنابراین ارتباط به مشابه داده‌های دسترسی نمینه‌ها ندارد. در الواقع این ابتکار}
\]
\[
\text{سعی بر آن دارد که داده‌هایی که در مجاورت یکدیگرند، در}
\]
\[
\text{فضا جدی نیز تا حد ممکن جالب یکدیگر باشند. بنابراین}
\]
\[
\text{اساس باید به زور نشونده بصورت زیر محاسبه شود:}
\]
\[
W_{ij} = \begin{cases} 1 & \text{if } (x_i \in N_j(x_j) \wedge x_j \in N_j(x_i)) \\ 0 & \text{otherwise} \end{cases}
\]
\[
\text{که جمعه } k \text{ تعداد وسایل همسه } x \text{ را نشان}
\]
\[
\text{می‌دهد. بنابراین ماتریس } W \text{ یک ماتریس مثبت است که}
\]
\[
\text{ارتباط میان داده‌ها را نشان می‌دهد. همچنین }
\alpha \text{ ضریبی است که تعمیم یکنواختی }
\text{جمله جمله جمله حذف توابعی در مخالفت با جمله اصلی مسئله بهینه‌سازی عملی کمینه‌سازی}
\text{می‌درد. بنابراین این مسئله بهینه‌سازی بالا به صورت زیر است:}
\]
\[
L = \frac{1}{|S|} \sum_{(x_i, y_i) \in S} \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right]
\]
\[
+ \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] W_{ij}
\]
\[
- \sum_{(x_i, y_i) \in D} \rho_i \left[(K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] W_{ij}
\]
\[
- \lambda_2 \left[\frac{1}{|D|} \sum_{(x_i, y_i) \in D} \left((K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] \right] - c \right]
\]
\[
\text{ارتباط بالا را نیز می‌توان به صورت زیر اعمال کرد:}
\]
\[
\begin{align*}
\min & \quad (a + p) \beta \\
\text{s.t.} & \quad b^T \beta \geq c, \quad t^T \beta = 1, \quad \beta \geq 0
\end{align*}
\]
\[
\text{که در رابطه بالا } p \text{ به صورت زیر تعیین می‌شود:}
\]
\[
\rho = \frac{1}{|D|} \sum_{(x_i, y_i) \in D} \left((K(x_i)_a + (K(x_i)_b - (2K(x_i)_y \right] \right] - c \right]
\]
\[
\text{چنجه ملاحظه شد، در ساختار مدل بهینه‌سازی متوسط خواص بین زوج‌های ناشابه، به صورت یک قید در مسئله}
\]
\[
\text{بهینه‌سازی به نظر گرفته شد. در برخی از مراجع از جمله}
\]
\[
\text{سیستم بهینه‌سازی خواص زوج‌های ناشابه به صورت مجموعه از فیلدهای متریک، به تعداد زوج‌های ناشابه در}
\]
\[
\text{نظر گرفته شده است. بنابراین در ساختار سوم فرض شده}
\]
\[
\text{است که به جای متوسط خواص زوج‌های ناشابه، فاصله}
\]
\[
\text{میان هر زوج ناشابه به طور مستقیم بهینه‌سازی شود و بنابراین}
\]
\[
\text{در مسئله بهینه‌سازی مقدار انتخاب مناسب تابع هدف و}
\]
\[
\text{فیلدهای متریک به کمک زبان داشته و تغییر آن می‌تواند}
\]
\[
\text{تأثیر زیادی در نتایج نهایی ایجاد کند. در ساختارهای بهینه‌سازی مورد بحث، بهینه‌سازی خواص زوج‌های ناشابه با استفاده از عبارت‌های ناساپا در قالب فیلدهای لاحق شده بود. از}
\]
\[
\text{سال 1396 شماره 1 January}
\]
\[
21
\]
5-آزمایش‌ها

پیش‌بینی بررسی‌کننده کیفیت عملکرد روش‌های پایداری‌ی معیار

واقعیت داده‌ها مسئولیت‌هایی داده‌ها با استفاده از الگوریت درک آزمایش‌ها یکی از مهم‌ترین مشکلات در پیش‌بینی داده‌ها از دیدگاه ارزیابی‌گر و ارزیابی بندی ریکاردو. همچنین استفاده شده در استفاده‌ها، مورد استفاده در این آزمایش‌ها و همچنین معیارهای آزمایش‌گر و واقعیت داده‌ها به‌طور تاثیرگذاری در پیش‌بینی داده‌ها و در الگوریت ریکاردو بخش که به دو خوشه متغیر تعیین داشته می‌شود. همچنین تعداد دو خوشه داده‌ها به دو خوشه متغیر تعیین داشته در الگوریت ریکاردو بخش که به دو خوشه متغیر تعیین می‌شود. همچنین تعداد دو خوشه داده‌ها به دو خوشه متغیر تعیین می‌شود.

5-1- آزمایش‌های استفاده‌شده در آزمایش‌ها

در انجام آزمایش‌ها از دو مجموعه داده‌های مصنوعی و واقعی استفاده شد. مجموعه تغییرات یعنی داده‌های مصنوعی منطقی به دو دسته متغیر به‌دست آمده که با استفاده از توابع گوسی با میانگین‌ها و اریتری‌های متغیرهای متغیرهای تولید می‌شود. این داده‌ها با توجه به چگونگی توسعه‌شان به داده‌های شریتی

31

لیرس 1396 شماره 1 پاییز
$\textbf{3-چگونگی انجام آزمایش‌ها و تناوب حاصل}

همانطور که ذکر گردید، در اینجا تولید مثال‌ها و داده‌ها برای پیش‌بینی می‌شود. در اینجا تنها دو روش تولید می‌شود تا بتواند به‌عنوان مدیری که با کارگیری منابع مورد بررسی واقعی می‌شود. در اینجا تنها دو روش تولید می‌شود تا بتواند به‌عنوان مدیری که با کارگیری منابع مورد بررسی واقعی می‌شود. در اینجا تنها دو روش تولید می‌شود تا بتواند به‌عنوان مدیری که با کارگیری منابع مورد بررسی واقعی می‌شود. در اینجا تنها دو روش تولید می‌شود تا بتواند به‌عنوان مدیری که با کارگیری منابع مورد بررسی واقعی می‌شود. در اینجا تنها دو روش تولید می‌شود تا بتواند به‌عنوان مدیری که با کارگیری منابع مورد بررسی واقعی می‌شود.
بهینهسازی وزن کریلن‌ها در یک ترکیب خلیه بی‌گونه‌ای

 BYU (کلمه‌های انگلیسی)

 این مقاله ایجاد می‌کند ولی کسی که فاصله از روش‌های مشابه کمی شود.

 نتایج کلیت (کلمات اینجا از چنین نمی‌شود)، مورد استفاده در این پژوهش

 عبارتند از:

 1) الگوریتم k-means
 2) الگوریتم با استفاده از روش بالا
 3) الگوریتم با استفاده از روش

 Xiang

 BMKL

 4) الگوریتم مبتنی بر کریلن
 5) الگوریتم با استفاده از روش

 بهشتام ایجاد کردن از روی

 6) الگوریتم مبتنی بر کریلن

 Xiang

 7) الگوریتم مبتنی بر کریلن

 که با استفاده از استخراج

 8) الگوریتم مبتنی بر کریلن

 سایت

 9) الگوریتم مبتنی بر کریلن

 سایت

 10) الگوریتم مبتنی بر کریلن

 سایت

 در اینجا آزمایش‌ها از کریلن گوشی و کریلن

 می‌تواند داده کریلن استفاده در روش

 نمایش داده از داده XOR

 که با نتایج چند

 از داده XOR

 که با داده اما

 در فضای جدید را ایجاد می‌کند. این

 از یک کلمه

 همان‌طور که در بالای

 از کلمه

 برای تعیین پارامتر کریلن گوشه، به نظر می‌رسد کریلن حاصل

 2) داده XOR

 3) داده XOR

 نمایش با خلیه چین و جزوه مشابه با خط ترکیب تایپی

 31 شماره 1 یوپای 1396
منفی‌رزی را با انتخاب $\theta=5$ ذکر نشده است و برای سایر مقادیر پارامتر θ نتایج غیرقابل‌حاس‌نمایی حاصل می‌شود. بنابراین انتظار می‌رود استفاده از این گرندیزی خاص برای هر مجموعه داده‌های نمونه‌برداری به‌هیچ‌گونه نتایج شود و بر همین اساس هدف روش‌های یادگیری کریکر مستقل‌سازی چینین گرندیزی‌هایی در برای انتخاب یک گرندیز نیز در مجموعه گروهی که گرندیز مرکب در آنها استفاده شده است، می‌توان برای انتخاب به‌مدت‌آمد از ساختارهای پیشنهادشده در این مقاله، یک گرندیز دیگر برای خوشه‌بندی داده همان‌طور که در شکل (3) نشان داده شده است، توسعه‌دهنده در مجموعه XOR به‌صورت مستقیم به‌حالت مشخص است. ساختارهای S1، S2، S3، S4 مشخص شده است. میزان تعداد دیده‌شده نشان داده شده است. میزان تعداد دیده‌شده در نظر گرفته شده‌است با بررسی این ساختار سوم می‌توان دید که با افزایش زوج‌هایی از ورودی‌های زوج، نتایج ضعیف‌تر خواهد شد. این نتایج در انتخاب ورودی‌های مربوط به دسته‌گشتی بیشتر به‌طور ملایم‌تر می‌باشد. در اینجا نتایج مربوط به ساختارهای مختلف، همان‌طور که در شکل (3) نشان داده شده است، انتخاب داده‌های برای بازی‌برداری (4) و در ابتدای میزان تعداد دیده‌شده در نظر گرفته شده انتخاب داده‌های برای بازی‌برداری (5) انتخاب داده‌های برای مجموعه داده‌های مختلف این گرندیز

\[
\begin{align*}
\text{S1} & : \quad 1, 2, 3, 4 \\
\text{S2} & : \quad 1, 2, 3, 4 \\
\text{S3} & : \quad 1, 2, 3, 4 \\
\text{S4} & : \quad 1, 2, 3, 4
\end{align*}
\]

امکان‌پذیر است که گرندیز مرکب در آنها استفاده شده است، می‌توان برای انتخاب به‌مدت‌آمد از ساختارهای پیشنهادشده در این مقاله، یک گرندیز دیگر برای خوشه‌بندی داده همان‌طور که در شکل (3) نشان داده شده است، توسعه‌دهنده در مجموعه XOR به‌صورت مستقیم به‌حالت مشخص است. ساختارهای S1، S2، S3، S4 مشخص شده است. میزان تعداد دیده‌شده نشان داده شده است. میزان تعداد دیده‌شده در نظر گرفته شده‌است با بررسی این ساختار سوم می‌توان دید که با افزایش زوج‌هایی از ورودی‌های زوج، نتایج ضعیف‌تر خواهد شد. این نتایج در انتخاب ورودی‌های مربوط به دسته‌گشتی بیشتر به‌طور ملایم‌تر می‌باشد. در اینجا نتایج مربوط به ساختارهای مختلف، همان‌طور که در شکل (3) نشان داده شده است، انتخاب داده‌های برای بازی‌برداری (4) و در ابتدای میزان تعداد دیده‌شده در نظر گرفته شده انتخاب داده‌های برای بازی‌برداری (5) انتخاب داده‌های برای مجموعه داده‌های مختلف این گرندیز

\[
\begin{align*}
\text{S1} & : \quad 1, 2, 3, 4 \\
\text{S2} & : \quad 1, 2, 3, 4 \\
\text{S3} & : \quad 1, 2, 3, 4 \\
\text{S4} & : \quad 1, 2, 3, 4
\end{align*}
\]

امکان‌پذیر است که گرندیز مرکب در آنها استفاده شده است، می‌توان برای انتخاب به‌مدت‌آمد از ساختارهای پیشنهادشده در این مقاله، یک گرندیز دیگر برای خوشه‌بندی داده همان‌طور که در شکل (3) نشان داده شده است، توسعه‌دهنده در مجموعه XOR به‌صورت مستقیم به‌حالت مشخص است. ساختارهای S1، S2، S3، S4 مشخص شده است. میزان تعداد دیده‌شده نشان داده شده است. میزان تعداد دیده‌شده در نظر گرفته شده‌است با بررسی این ساختار سوم می‌توان دید که با افزایش زوج‌هایی از ورودی‌های زوج، نتایج ضعیف‌تر خواهد شد. این نتایج در انتخاب ورودی‌های مربوط به دسته‌گشتی بیشتر به‌طور ملایم‌تر می‌باشد. در اینجا نتایج مربوط به ساختارهای مختلف، همان‌طور که در شکل (3) نشان داده شده است، انتخاب داده‌های برای بازی‌برداری (4) و در ابتدای میزان تعداد دیده‌شده در نظر گرفته شده انتخاب داده‌های برای بازی‌برداری (5) انتخاب داده‌های برای مجموعه داده‌های مختلف این گرندیز

\[
\begin{align*}
\text{S1} & : \quad 1, 2, 3, 4 \\
\text{S2} & : \quad 1, 2, 3, 4 \\
\text{S3} & : \quad 1, 2, 3, 4 \\
\text{S4} & : \quad 1, 2, 3, 4
\end{align*}
\]

امکان‌پذیر است که گرندیز مرکب در آنها استفاده شده است، می‌توان برای انتخاب به‌مدت‌آمد از ساختارهای پیشنهادشده در این مقاله، یک گرندیز دیگر برای خوشه‌بندی داده همان‌طور که در شکل (3) نشان داده شده است، توسعه‌دهنده در مجموعه XOR به‌صورت مستقیم به‌حالت مشخص است. ساختارهای S1، S2، S3، S4 مشخص شده است. میزان تعداد دیده‌شده نشان داده شده است. میزان تعداد دیده‌شده در نظر گرفته شده‌است با بررسی این ساختار سوم می‌توان دید که با افزایش زوج‌هایی از ورودی‌های زوج، نتایج ضعیف‌تر خواهد شد. این نتایج در انتخاب ورودی‌های مربوط به دسته‌گشتی بیشتر به‌طور ملایم‌تر می‌باشد. در اینجا نتایج مربوط به ساختارهای مختلف، همان‌طور که در شکل (3) نشان داده شده است، انتخاب داده‌های برای بازی‌برداری (4) و در ابتدای میزان تعداد دیده‌شده در نظر گرفته شده انتخاب داده‌های برای بازی‌برداری (5) انتخاب داده‌های برای مجموعه داده‌های مختلف این گرندیز

\[
\begin{align*}
\text{S1} & : \quad 1, 2, 3, 4 \\
\text{S2} & : \quad 1, 2, 3, 4 \\
\text{S3} & : \quad 1, 2, 3, 4 \\
\text{S4} & : \quad 1, 2, 3, 4
\end{align*}
\]
همچنین به‌منظور بررسی دقیق‌تر عملکرد کرمل مرکب در مقایسه با استفاده از یک کرمل به‌نهایی در شکل (8) نتایج حاضر از کرمل‌پیمایی بر کرمل در k-means شرایطی که تنها زیک کرمل استفاده شود نیز مورد بررسی قرار گرفت و آزمایش‌ها برای استفاده از هر یک از این چهارده کرمل بالا بر روی مجموعه داده‌های متنوع UCI گزارش شده است. این نتایج به‌توجه طرح گربرتی عملکرد کرمل مرکب در مقایسه با استفاده از یک کرمل در هنگام است.

Soybean (7) Sonar (8) DMKL (9) Heart (10) Šimanov [26] همبستگی کاملی‌گربرتی

(Figure-5): Clustering results of different algorithms for UCI datasets. 1) Euclidean, 2) RCA [17], 3) Xiang [11], 4) kernel-β [20], 5) unweighted-S [26], 6) DMKL [27], 7) structure 1, 8) structure 2, 9) structure 3, 10) structure 4. (a) Soybean, (b) Heart, (c) Ionosphere, (d) Wine, (e) Sonar, (f) Iris

(شکل-6): متوسط RI روش‌های مختلف بر روی داده UCI به‌ازای تعداد قیده‌های متغیری. 1) ساختار بک، 2) ساختار دو، 3) ساختار سه، 4) ساختار چهار، 5) ساختار پنجم (S1) ساختار یک، (S2) ساختار دو، (S3) ساختار سه، (S4) ساختار چهار، (S5) ساختار پنجم

(Figure-6): Average RI of different algorithms for UCI dataset when the different number of constraints is used. S1) structure 1, S2) structure 2, S3) structure 3, S4) structure 4. (a) Soybean, (b) Heart, (c) Ionosphere, (d) Wine, (e) Sonar, (f) Iris
(Figure-7): Clustering results of different algorithms for UCI datasets. 1) Euclidean, 2) RCA [17], 3) Xiang [11], 4) kernel-β [20], 5) unweighted-S [26], 6) DMIN [27], 7) structure 1, 8) structure 2, 9) structure 3, 10) structure 4. (a) Soybean, (b) Heart, (c) Ionosphere, (d) Wine, (e) Sonar, (f) Iris

(Figure-8): Clustering results of kernel k-means using a single kernel among the mentioned fourteen kernels for UCI datasets. (a) Soybean, (b) Heart, (c) Ionosphere, (d) Wine, (e) Sonar, (f) Iris
در این مقاله ساختارهای جدیدی برای یادگیری کریل مرکب با استفاده از مفاهیم اساسی در مدل یادگیری معماری فاصله مطرح شد که در اینجا از زوجهای مشابه و نامتشابه در یک مدل بهینه‌سازی خطی با پایه خطی برای آموزش ورژن‌کریل‌ها استفاده می‌شود. ساختارهای پیشنهادشده در این مقاله بر مبنای توابع هدف (هرزن) متفاوتی است که هر کدام در یک جایگاه خود اهداف خاصی را در یادگیری معماری مفصلی نشان می‌دهند. ساختارهای پیشنهادی با رقیب‌های معروف دیگر کاملاً مشابه و قابل مقارن است. امکاناتی که بر کلیک و یا غیر کریل و همچنین تغییر در ورژن‌های مشابه و زوجهای مشابه بر قرار می‌گیرد. در حال حاضر مدل سه بعدی کریل عملکرد بهتری در مقایسه با مدل سه بعدی دیگر کریل دارد. کنیونه روضه‌های پیشنهادی بهبود ساختار سوم محسوسی نسبت به تعداد زوج‌های زوج‌های استفاده شده کاهش پیدا کرد. در ساختار سوم چون هر زوج مشابه به‌کله بهبود پیشنهادی اضافه می‌کند، با افزایش تعداد این زوج‌ها، ساختار پیشنهادی ایجاد سردرگمی کرد و توانایی خود در خوشبینی دقیق را در تعداد زوجهای زیاد از دست داد. با توجه به نتایج بدست آمده، ساختار سوم بیشتر از سایر ساختارهای مورد بررسی کم که این نتایج بهتری نیاز به ویدئویی پایه‌های مشابه و نامتشابه انتخاب شده است. یکی دیگر از مزایای ساختارهای پیشنهادی مقبول‌بودن این ساختارهای در برای انتخاب پایه‌های کریل‌های پایه‌ای است.

7- مراجع

و آن پس تاکنون استادیار دانشگاه مهندسی برق و
کامپیوتر دانشگاه یزد است. همچنین پژوهشی نامبرده با مرکز
تحقیقات بینالی مهندسی و پردازش سیگنال دانشگاه ساری
همچنان ادامه دارد. زمینه‌های پژوهشی مورد علاقه وی
بازاریابی آماری اکو، پردازش تصویر و بینایی مانندی است.
نشانی رایانه‌ای این اشاره عبارت است از:
m.sadeghi@yazd.ac.ir

حمیدرضا ابوطالبی دوره کارشناسی
و کارشناسی ارشد را به ترتیب در
سال‌های ۱۳۷۳ و ۱۳۷۷ در رشته‌های
مهندسی برق (مخابرات) در دانشگاه
صنعی شریف گذراند و مدرک
دکترای خود را در سال ۱۳۸۲ در رشته مهندسی برق (مخابرات)
از دانشگاه صنعتی امیرکبیر اخذ کرد.

وی در جراین رسانه دکترای خویش، به‌مدت یک
سال در دوره فرصت مطالعاتی در دانشگاه اترلوا کانادا به سر
برد. دکتر ابوطالبی در سال ۱۳۸۲ به دانشگاه مهندسی برق
دانشگاه یزد پیوست و هم‌اکنون به عنوان استاد گروه مهندسی
مخابرات در این دانشگاه مشغول به فعالیت است. وی
همچنین در سال‌های ۱۳۸۹-۹۰ و ۱۳۹۵-۹۶ در دانشگاه مهندسی برق (مخابرات)
از مراکز تحقیقاتی Idiap و سوئیس سپری کرد. زمینه‌های
علمی مورد علاقه وی پردازش سیگنال گفتار،
پردازش سیگنال گفتار، مکان‌یابی گوینده، ویژن
و تحلیل
زمان-فراکس است.

نشانی رایانه‌ای این اشاره عبارت است از:
habutalebi@yazd.ac.ir