Shape-based Object Retrieval using descriptors extracted from Growing Contour Process

Khadije Mahdikhanlou & Hossein Ebrahimnezhad*
Computer Vision Res. Lab, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran

Abstract
In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they get to the shape contour. Three different shape descriptors are extracted from this process: the first descriptor is defined as the number of steps that every circle point should pass which is called Growing Steps. The second descriptor is considered as the boundary distance of the circle points at the end of the growing process. The third descriptor is the curvature of the growing lines created by moving points. Invariance to translation is the intrinsic property of these features. By selecting a fixed starting point and tracing the boundary in a fixed direction (clock-wise or counter clock-wise), a set of descriptors could be collected invariant to rotation. Finally, normalizing the descriptors makes them invariant to scale. Support vector machines based on one-shot score are applied in the retrieval stage. Experimental results show that the suggested method has high performance for shape retrieval. It achieves 89.16% retrieval rate on MPEG-7 CE-Shape-1 dataset.

Keywords: Shape retrieval, Growing points, Growing steps, Boundary distance, Curvature of growing lines, SVM-OSS.

* توییده‌های معین ساخت‌نیای
مکان یا جویا فرکانس تحلیل کرد، روش‌های مکانی، نقاط شکل را بررسی می‌کند. در روش‌های بی‌ایف فرکانس، شکل به حوزه فرکانسی نگاشته می‌شود.

روش‌های مکانی، یک روش بی‌ایف گسترده است که مفهوم مکان‌های محیطی و همچنین شکل‌های استخراج می‌کند. برای استخراج گسترده‌ای، شکل‌ها به دست آمده از مطابقت نیستند. در صورتی که مکان‌ها یا ساختارهای دیگر در حوزه فرکانسی قرار گرفته باشند، باید تأثیرات آنها در حوزه فرکانسی نمایش داده شود.

1- مقدمه

ظهور فناوری‌های جدید، منجر به تولید و روزافزون تصنیف دیجیتال شده است. با توجه به عناصر تغییر آماده باشد، جایی توپ‌های بی‌ایف به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گسترده‌ای به‌صورت به‌طور تکرار پیوسته در حوزه فرکانسی قرار گرفته‌اند. این مدل‌ها به‌طور کلی به‌طور بهینه و سریعترین روش‌های استخراج گست

2- مرواری بر کارهای گذشته

در برخی روش‌ها یک تابع پیوسته برای شکل مانند مختصات مختلف، فاصله از مرکز، طول و عرض ژئواسی مماس 3 Occlusion
4 One-Shut Similarity

3 Distortion

4 سال 1395 شماره 3 پاییز 29
نقاط کانورنر مرزی معرفی شده است [4]. توابع یک بعدی می‌توانند به‌عنوان معروف شکل باشند با به‌عنوان پیکسل‌برداری برای سایر الگوریتم‌های استخراج ویژگی، مانند توصیفگرهای قریب و توصیف موجک استفاده شوند.

تابع مختلط معادله برای ساختار مختصات مختلف است [6]. این تابع با معادله N تعداد کل مختصات مرزی، n اندیس پیکسل کانور α، β، γ، δ، ϵ کانور مرزی $P_x(x_n,y_n)$، $P_y(x_n,y_n)$، $P_z(x_n,y_n)$، $P_t(x_n,y_n)$ و $P_{gt}(x_n,y_n)$ که در آن $P_x(x_n,y_n)$، $P_y(x_n,y_n)$ و $P_t(x_n,y_n)$ توابع و نمایش داده نشده‌اند.

در زیر برای هر نقطه x_n,y_n، تابع مختصات نقطه $P_x(x_n,y_n)$، $P_y(x_n,y_n)$ و $P_t(x_n,y_n)$ به صورت رابطه (4) تعیین می‌شود:

$$TAR(n,t) = \frac{1}{2} \left(\frac{y_{n-t}}{y_n} + \frac{y_{n+t}}{y_n} \right)$$

در این n برای هر نقطه x_n,y_n، تابع مختصات نقطه $P_x(x_n,y_n)$، $P_y(x_n,y_n)$ و $P_t(x_n,y_n)$ به‌عنوان فاصله از مرکز و g_x، g_y و g_t به‌عنوان فاصله از مرکز نقطه $P_x(x_n,y_n)$، $P_y(x_n,y_n)$ و $P_t(x_n,y_n)$.

$$Z(n) = [x(n) - g_x] + i[y(n) - g_y]$$

$$g_x = \frac{1}{N} \sum_{i=1}^{N} x(n)$$

$$g_y = \frac{1}{N} \sum_{i=1}^{N} y(n)$$

$$r(n) = \sqrt{(x(n) - g_x)^2 + (y(n) - g_y)^2}$$

از آنجایی که هم در تابع مختصات مختلط و هم در تابع فاصله از مرکز، فاصله نقطه مرز از مرکز شکل محله می‌شود، بایستی این دو معادله را انتخاب کنیم. تابع فاصله موازی مماس در نقطه $P_x(x_n,y_n)$، $P_y(x_n,y_n)$ و $P_t(x_n,y_n)$ به‌عنوان رابطه (5) جهت خط موازی محاسبه تعیین می‌شود.

$$\theta(n) = \text{arctan} \frac{y(n)-y(n-\omega)}{x(n)-x(n-\omega)}$$

در این ω، ω تابع دقت $\theta(n)$ برای کار یک بعدی از دیگر توابع یک بعدی می‌تواند به‌عنوان اشکاله کردن که می‌تواند معرف و محاسبه نقطه شروع در تولید حساس باشد. کنترلر به‌عنوان محل میدان و نسبت به نقطه اصلی محاسبه است. به این ترتیب بایستی، برای تعیین هیستوگرام کنترلر سایر کدگذاری زنجیره به‌عنوان نمایش 4 Differential chain code
5 Re-sampling chain code

سال 1395 شماره 31 29 شماره 31 29
تویفیگر شکل، امکان کردن این است که از این نقطه مرتبط برای گیری که به صورت خلاص این نقطه بتوانید مربوط به تصویر می‌شود.

اگرچه تبدیل فوریه یک روش به عنوان است، هنوز هم به‌عنوان یک ابزار توصیف معمول در ضرورت گرفته می‌شود.

تویفیگر و طبقه‌بندی شکل‌ها با استفاده از تبدیل فوریه در کانال‌های برای بررسی می‌شود. این تبدیل شکل‌های آن را با بهترین مکانیابی ساده نسبت به نفوذ نقاط ااست و نمایش قدرت الکتریکی از شکل‌ها ارائه می‌دهد در سیر سازی هماهنگی مختلف کاربرد دارد. به‌طور کلی، توصیف‌گره فوریه در این سئوس از مطالعات تبدیل فوریه به‌عنوان یک یکپارچه داشته، به‌عنوان پدیده‌ای محسوس به‌نموده‌ند.

گراف شکا یک توصیف‌گر بر یک پایه محور می‌باشد. محور میانی محیط‌پرین روشی است که به‌عنوان چکیده‌ای می‌تواند نقش نمایشگر یا نمایشگر سازمانی پیشنهاد شده است. این پدیده گرایشی شکار به‌وسیله برای مبادله آشنا استفاده شده است. به‌ین روش‌ها از خروجی با کمک‌هایی استفاده می‌شود. محور میانی یک عملگر برداشت تصویر است که شکل‌های ورودی را به‌صورت محوش‌های صورت برداشت که از دو طرف به کانال‌های شکل مماس شده و به‌طور کامل داخل شکل قرار داده شده. شما به‌ین مفاهیم است.

این تغییرات ناشی از مکان ناپایداری نواز حقوق محور می‌باشد. این تغییرات ناشی از نواز حقوق محور می‌باشد. گراف شکا یک چکیده‌ای بتوان است که شکل‌ها را به اجرا اولیه سازند. به‌طور معمول می‌توانند در روزه یک مم کنت [12], [13].

1 Shock graph

2 Beam angle statistics

3 moments
این صورت است که ابتدا از نقطه‌ی روی کانون مرزی
نمونه‌برداری می‌شود سپس به‌وسیله روی نقطه
نمونه‌برداری شده‌ی خط مماسی رسم می‌شود. بعد از آن ارتفاع
بی‌فردیا از این خط مماس محسوس می‌شود. این دنباله از
ارتفاها و بی‌فردیا آن نقطه تعریف می‌شود. این عمل برای
نقاط نمونه‌برداری شده نکار می‌شود تا ردار ویژگی
شکل حاصل شود.

در روش فاصله‌ای از مرکز نقطه یا کانون شکل‌هایی از
مکانیک شکل‌هایی که را با کتک‌کتکی کن. فاصله نقطه
کانون از مرکز نقطه یا کتک‌کتکی را به این شکل کد
می‌کنیم که به‌وسیله‌ی یک دایره‌ای به چسب آن نقطه
کانون نمایانگر شده‌ی شایع بین روش‌های مناسب است که
می‌تواند با استفاده از این روش به‌وسیله‌ی یک دایره‌ای
مکانیک مشتق یک نقطه یا نقطه‌ی کتک‌کتکی در هر نقطه
کانون مناسب است. ممکن است با استفاده از این روش
محاسبه شده‌ی نسبت به تبدیل وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق یک نقطه یا نقطه‌ی کتک‌کتکی در هر نقطه
کانون مناسب است. ممکن است با استفاده از این روش
محاسبه شده‌ی نسبت به تبدیل وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق یک نقطه یا نقطه‌ی کتک‌کتکی در هر نقطه
کانون مناسب است. ممکن است با استفاده از این روش
محاسبه شده‌ی نسبت به تبدیل وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
مکانیک مشتق مشتق می‌شود. منابع مشتق به‌وسیله‌ی
در مرجع [24] در سال ۲۰۱۰ توصیف گردهای محلی
نوربخش چندی که به این روش وایت و ۸ برای پایه‌ی
меканіческі франки

\[
m_r = \frac{1}{N} \sum_{i=1}^{N} Z(i)^r
\]
روی نقطه ی-ام دایره را نشان می‌دهد و

 در رابطه (11) خوشه‌ها وزن داده می‌شود و در مرحله این متغیرها به‌ورزش‌سازی می‌شوند. در فاصله قبلی بیان شده بود، در مورد مقدار EMD هر سطح هسته‌ای آنها نظیره‌ریزی در نظر گرفته می‌شود ولی در روش [30] فاصله هر سطح از هسته‌گراف نشست با تمام سطوحی هسته‌گراف دوم سنجیده می‌شود، سپس به این فاصله‌ها وزن داده می‌شود. در این روش تعداد عملکردی که لازم است را تعیین می‌کنیم. همیشه نخستین نکته گرد تا به مشاهده نشانده‌ی می‌شود، هسته‌گراف دوم تبدیل می‌شود به عناوین تابع هزینه در نظر گرفته می‌شود.

3- فرآیند رشد پیشنهادی

فرآیند رشد نقطه ی-ام دایره نگاشت قطعه دایره می‌شود، به نقطه کانونی خارجی شکل در نظر گرفته. برای انجام این نگاشت باید دو میله بین دو نقطه دایره می‌شود. از این دو میله به‌طور مداوم یک نقطه شیب دیگر از حرف دایره محیطی و یزدی‌ها استخراج می‌شود که برای توصیف شکل به‌کار می‌رود. شما کلیه الگوریتم‌های پیشنهادی در شکل (1) نشان داده شده است. در این بخش یک فرآیند معرفی می‌شود که از طریق آن یک کانونی شکل توسط یک دایره بازسازی می‌شود، به این که کوانترنی در نظر داشته شکل رسم می‌شود. برای این کار، مرکز نقطه تابع به‌کار می‌رود و در نظر گرفته می‌شود. مختصات مرکز نقطه شکل به‌صورت

 (9) به‌دست می‌آید که در آن

 می‌باشد. شکل (1) فاصله دو دایره گرفته می‌شود. این نقطه به عناوین نقطه شیب در نظر گرفته شوش دو دایره یا دایره یا گامهای ثابت نمونه‌برداری می‌شود.

در این مقاله، تعداد نقطه ی-ام دایره تابع شکل‌ها یکسانی بیشتر عدد، در نظر گرفته شده است و سپس این نقاط با گامهای ثابت به‌طور پیوسته در جهت نرمال به سمت شکل کانونی متغیر طی کاری که به کانونی تابع تبدیل شده است.

برای بیانیه جهت نرمال هر نقطه تنها از نقطه قبل و

 بعد از استفاده شده است.

(شکل (1): شما کلیه الگوریتم پیشنهادی.

(Figure-1): Diagram of the proposed algorithm.)
شکل (۴) نیز تبدیل نقطه دایره (نقاط صورتی) را پس از رسیدن به مرز کانونش شکل (نقاط سبز) نشان می‌دهد.

\[m_i = \frac{dV}{dx} = \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} \]

\[m'_i = -\frac{1}{m_i} \]

شکل (۴) فرآیند رشد را با حرکت نقاط در جهت نرمال نشان می‌دهد. در شکل (۲) دو می‌برینیم که در هر مرحله از رشد قسمت‌های محدب و مقعر شکل نمایان می‌شود.

شکل (۲): فرآیند رشد نقطه (الده): نقاط صورتی، نقاط دایره، نقاط رشد و فلش‌های آبی، جهت نرمال نقطه را نشان می‌دهند. (ب): نقاط رشد در جهت فلش‌های آبی که همان جهت نرمال است به سمت شکل حرکت می‌کند. (ج): نقاط رشد پس از رسیدن به کانون خارجی شکل می‌رسند.

(Figure- 2): The evolution process. (a) Pink points show evolution points and blue vectors display normal direction. (b) Evolution points move along the normal direction towards the shape. (c) Evolution points reach the boundary of the shape.

(شکل- ۲): مدل فرآیند رشد نقطه. با دنبال کردن شکل‌ها در راسته چپ و از بالا به پایین مشاهده می‌شود که قسمت‌های محدب و مقعر شکل در هر مرحله نمایان می‌شود.

(Figure- 3): The steps of the evolution process, in each iteration the concavities of the shape are created.

۴-۱- چاه‌های رشد
تعداد گام‌هایی را که هر یک از نقاط نمونه‌داری، شکل دایره محیطی باید طی کند تا به کانون شکل برسند به معنای توصیف‌گر نخست، در نظر گرفته و آن گام‌هایی رشد نامیده می‌شود. بدیهی است نقاطی که از مرکز شکل دور هستند گام‌های بیشتری را برای رسیدن به کانون شکل باید طی کند.

۴-۲- فاصله مرزی
فاصله مرزی بین دو نقطه به صورت تعداد پیکسل‌هایی که باید روی کانون شکل طی شود تا به نقطه دیگر رسید تعریف می‌شود. نقاط دایره در آخر فرآیند رشد که به کانونش شکل رسیده‌اند، فاصله مرزی یکسانی ندارند. همانطور که در شکل (۱) مشاهده می‌شود، نقاط نزدیک به مرکز شکل نسبت به هم فاصله مرزی کمتری دارند.

سال ۱۳۹۵ شماره ۱۲ بهمن ۲۹
کانون شکل) به‌عنوان ویژگی آن خط در روزگاره‌های می‌شود.

تابع احتمالی با استفاده از [13] به‌صورت فرمول (12) محاسبه می‌شود که در آن x, y, x', y', x'', y'' مشخصات نخست‌منظمه، مشخصات دوم مسئله و مشخصات دوم مسئله نخست‌منظمه دوم مختصات پیکسل‌های نقاط خطوطی رشد است.

$$K(n) = \frac{x(n)y'(n) - y'(n)x(n)}{(x(n)^2 - y'(n)^2)^{3/2}}$$

(12)

(شکل-4): بازسازی کانون زیر از دایره صورتی.

(Figure-4): Reconstructed green contour from pink circclereconstructeded circle.

5- اندمازگیری شبهات براساس OSS

یکی از شرایطی که در همین امر برای اندام‌گیری شبهات بین برداری و یوزیک به‌کار برده می‌شود است. در نهایت می‌شود، برداری است. امر این است که احتمال به یک طبقه تعلق دارند. این احتمال با استفاده از یک مجموعه نمونه‌های که به اصطلاح مجموعه مثال‌های منفی نامیده می‌شود، محاسبه می‌شود. برای اندام‌گیری امتیاز بین یک بردار داده می‌شود، درست این است که مجموعه نمونه‌های منفی A به این صورت عمل می‌شود: ابتدا مدل Φ براساس نمونه‌های منفی A و نمونه مثبت Y اموزش داده و سپس از مدل برای تعیین طبقه x استفاده می‌شود. امتیاز نخست در این مرحله به‌دست می‌آید.

(شکل-5): خطوط رشد را نشان می‌دهد. منحنی سبز منحنی محدب شکل را نشان می‌دهد.

(Figure-5): Pink lines are created by moving evolution points. The Green curve shows the convex hull plane of the shape.

3- میانگین انحایی خطوط رشد

وقتی نقاط دایره حکمران می‌کند، خطوطی را می‌سازند که خطوط رشد نامیده می‌شوند. دنبال کردن نقاط هر رشد از طرفه به طرفه محدب 1 شکل ناشناخته می‌شود که خطوط مستقیم هستند و این ناواندا از دکتر (5) دیده می‌شود که بعد از منحنی محدب 1 این خطوط حمیله می‌شود. در این مقاله از SVM استفاده شده است. استفاده در طبقه‌بندی داده‌ها با استفاده از SVM در طبقه‌بندی داده‌ها که به‌طور کلی در SVM در یک بافت ابرساخته برای طبقه‌بندی این SVM استفاده می‌شود. ابرساخته‌ها بین طبقه‌ها طوری قرار می‌گیرند که بیشترین فاصله بین طبقه‌های مختلف ایجاد شود. با این امر، این طبقه‌بندی به طبقه‌بندی بیشتری نشان می‌دهد. 1 معرف مستند. شکل (6) اموزش مدل مثالی منفی را براساس SVM نشان می‌دهد.

3 Negative examples set
4 Maximum margin classifiers

1 Convexhull
2 Support vector machines
6- نتایج شیپسازی

MPEG-7 CE-Shape-1 [32] پایگاه داده

مکانیک برای پایگاه و پاسخ‌نامه مثلثی محسوب می‌شود.

پایگاه داده شامل ۲۰۰۰۰۰ عکس است که هر یک شامل بیست تصور سایه و سفید است. شکل (۷) نمونه‌هایی از تصور این پایگاه داده را نشان می‌دهد. این پایگاه داده شامل تصورات طبیعی و سنتیکی است و تغییرات هندسی شامل چرخش، اندازه و تغییرات مکانی در آن به‌صورت می‌خورد. به منظور مقایسه الگوریتم پیش‌نهادی با الگوریتم‌های موجود در شرایط (bullseye) برای پایگاه‌های این پایگاه داده از امتیاز استفاده می‌شود. برای محاسبه این امتیاز، هر شکل یک پیکسل به‌عنوان داده آزمایشی در نظر گرفته و با تمام شکل‌های دیگر مقایسه می‌شود. سپس جهل شکل مشابه نخست انتخاب می‌شود. این چهل مورد انتخاب شده، تعداد شکل‌هایی که در طبقه درست هستند، شمرده می‌شوند.

تعداد پایگاه‌های درصدی برای تمام طبقه‌ها شمارش و به‌عنوان امتیاز (bullseye) گزارش می‌شود. درصد پایگاه‌های به صورت درصدی از حداکثر پایگاه درصد می‌کاهد.

<table>
<thead>
<tr>
<th>الگوریتم (۱)</th>
<th>آموزش</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Shot-Similarity (x_i, x_j, A) :</td>
<td></td>
</tr>
</tbody>
</table>
Model 1: train (x_i, A) |
Score 1: classify (x_i, Model 1) |
Model 2: train (x_j, A) |
Score 2: classify (x_j, Model 2) |
Return $\frac{1}{2}(\text{Score 1} + \text{Score 2})$

Khimia-25 Shape

یکی دیگر از پایگاه‌های استفاده‌کننده مورد استفاده قرار می‌گیرد. پایگاه داده

است. این پایگاه داده شامل ۲۰۰۰۰۰۰ تصور دودویی است که در شش طبقه جای گرفته‌اند. شکل (۷) تصور این پایگاه داده را نشان می‌دهد. گزارش نتایج پایگاه در این پایگاه داده به صورت تخضیب شکل مشابه و به شکل مشابه نخست در نظر گرفته می‌شود. نتایج پایگاه در جدول (۲) آمده است.

۲- پایگاه داده

Khimia-25 shape

یکی دیگر از پایگاه‌های استفاده‌کننده مورد استفاده قرار می‌گیرد. پایگاه داده

است. این پایگاه داده شامل ۲۰۰۰۰۰۰ تصور دودویی است که در شش طبقه جای گرفته‌اند. شکل (۷) تصور این پایگاه داده را نشان می‌دهد. گزارش نتایج پایگاه در این پایگاه داده به صورت تخضیب شکل مشابه و به شکل مشابه نخست در نظر گرفته می‌شود. نتایج پایگاه در جدول (۲) آمده است.

۲۰۱۴ ۱۳۹۳ شماره ۳ ۲۹
(جدول-1): نتایج بیانیه کورتینیهای مختلف روی پاپگاه داده

<table>
<thead>
<tr>
<th>کورتینه</th>
<th>درصد بزراپی</th>
<th>فیلی در صفحه</th>
<th>مقدار میانگین تناولی</th>
<th>مقدار احتمالات ناشناخته</th>
<th>مقدار احتمالات بهینه</th>
<th>مقدار احتمالات تناولی بهینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیچر</td>
<td>75.44</td>
<td>15</td>
<td>0.32</td>
<td>0.10</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>کیچر</td>
<td>76.45</td>
<td>21</td>
<td>0.34</td>
<td>0.14</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>کیچر</td>
<td>76.51</td>
<td>10</td>
<td>0.33</td>
<td>0.13</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>کیچر</td>
<td>77.34</td>
<td>34</td>
<td>0.35</td>
<td>0.15</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>کیچر</td>
<td>78.17</td>
<td>35</td>
<td>0.36</td>
<td>0.16</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>کیچر</td>
<td>78.38</td>
<td>36</td>
<td>0.37</td>
<td>0.17</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>کیچر</td>
<td>79.19</td>
<td>37</td>
<td>0.38</td>
<td>0.18</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>کیچر</td>
<td>82.69</td>
<td>38</td>
<td>0.40</td>
<td>0.20</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>کیچر</td>
<td>79.92</td>
<td>39</td>
<td>0.42</td>
<td>0.22</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>کیچر</td>
<td>80.03</td>
<td>40</td>
<td>0.43</td>
<td>0.23</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>کیچر</td>
<td>80.54</td>
<td>41</td>
<td>0.44</td>
<td>0.24</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>کیچر</td>
<td>80.78</td>
<td>42</td>
<td>0.45</td>
<td>0.25</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>کیچر</td>
<td>84.33</td>
<td>43</td>
<td>0.46</td>
<td>0.26</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>کیچر</td>
<td>84.93</td>
<td>44</td>
<td>0.47</td>
<td>0.27</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>کیچر</td>
<td>87.04</td>
<td>45</td>
<td>0.48</td>
<td>0.28</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>کیچر</td>
<td>87.31</td>
<td>46</td>
<td>0.49</td>
<td>0.29</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>کیچر</td>
<td>89.31</td>
<td>47</td>
<td>0.50</td>
<td>0.30</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>کیچر</td>
<td>89.62</td>
<td>48</td>
<td>0.51</td>
<td>0.31</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td>کیچر</td>
<td>89.66</td>
<td>49</td>
<td>0.52</td>
<td>0.32</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>کیچر</td>
<td>90.35</td>
<td>50</td>
<td>0.53</td>
<td>0.33</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>کیچر</td>
<td>86.78</td>
<td>51</td>
<td>0.54</td>
<td>0.34</td>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>کیچر</td>
<td>87.02</td>
<td>52</td>
<td>0.55</td>
<td>0.35</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>کیچر</td>
<td>87.98</td>
<td>53</td>
<td>0.56</td>
<td>0.36</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>کیچر</td>
<td>89.16</td>
<td>54</td>
<td>0.57</td>
<td>0.37</td>
<td>0.28</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Kimia-99 Shape (شکل-8): نتایج بیانیه پارامتر سه شکل از پاپگاه داده MPEG-7

(شکل-8): بیانیه پارامتر سه شکل از پاپگاه داده MPEG-7

Kimia-25 Shape (شکل-9): تصاویر پاپگاه داده

(Figure-9): Kimia-25 dataset’s images.

Kimia-99 Shape (شکل-12): بیانیه داده پاپگاه داده MPEG-7

(شکل-12): تصاویر پاپگاه داده MPEG-7

سال 1395 شماره 3 پاییز 29
این نتیجه با اختصار True Positive TP نامگذاری می‌شود. نتیجه دوم تعداد نمونه‌هایی است که به طبقه n تعلق دارند ولی طبقه آنها p تشخیص داده شده است. این نتیجه False Positive (FP) نام دارد. نتیجه سوم تعداد نمونه‌هایی است که به طبقه n تعلق دارند ولی طبقه آنها True Negative (TN) تشخیص داده شده است. این نتیجه نامیده می‌شود. نتیجه چهارم تعداد نمونه‌هایی است که به طبقه p تعلق دارند ولی طبقه آنها p تشخیص داده شده است. این نتیجه False Negative نامیده می‌شود. نمودار ROC نرخ TP را بر حسب نرخ FP نشان می‌دهد. نرخ ROC به ترتیب از روابط (13) و (14) به دست می‌آید.

<table>
<thead>
<tr>
<th>تکنیک</th>
<th>10</th>
<th>اسید</th>
<th>20</th>
<th>اسید</th>
<th>30</th>
<th>اسید</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیمیا 25</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کیمیا 99</td>
<td>20</td>
<td>23</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(جدول-2): نتایج برخی از الگوریتم‌های مختلف روی پایگاه داده Kimia-25</th>
<th>متوسط</th>
<th>متوسط</th>
<th>متوسط</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیمیا 99 Shape</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(جدول-3): نتایج برخی از الگوریتم‌های مختلف روی پایگاه داده Kimia-99</th>
<th>متوسط</th>
<th>متوسط</th>
<th>متوسط</th>
<th>متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>کیمیا 99 Shape</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
<td>تصاویر پایگاه داده</td>
</tr>
</tbody>
</table>
(جدول-4): مقایسه نتایج دسته‌بندی روی پایگاه داده-MPEG-7 CE-Shape-1

Table- 4: Comparison of recognition rates on MPEG-7 dataset

<table>
<thead>
<tr>
<th></th>
<th>PNN</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل زمان رشد</td>
<td>91.89</td>
<td>92.60</td>
</tr>
<tr>
<td>فاصله مرزی: زمان رشد</td>
<td>92.46</td>
<td>93.24</td>
</tr>
<tr>
<td>کانترل زمان رشد + فاصله مرزی: زمان رشد</td>
<td>92.35</td>
<td>93.50</td>
</tr>
<tr>
<td>کانترل زمان رشد + فاصله مرزی: زمان رشد + میانگین</td>
<td>93.79</td>
<td>95.43</td>
</tr>
</tbody>
</table>

8- پیچیدگی محاسباتی

پیچیدگی محاسباتی فرآیند رشد و تلفک در صورت درجه O(N) است. در صورت افزایش از درجه O(N) و داده‌های کوچک، استخراج محاسباتی باید به دست آید. پیچیدگی محاسباتی استخراج داده‌های کوچک در حالت نسبی باید به نظر می‌رسد. پیچیدگی محاسباتی توصیفگر دوم از درجه O(N) است. پیچیدگی محاسباتی توصیفگر دوم، با افزایش O(N) و داده‌های کوچک به فرآیند استخراج توصیفگر سوم، با افزایش O(N) و داده‌های کوچک به فرآیند استخراج توصیفگر سوم وارد می‌شود. پیچیدگی محاسباتی در حالت نسبی باید به نظر می‌رسد. پیچیدگی محاسباتی توصیفگر دوم از درجه O(N) است. پیچیدگی محاسباتی توصیفگر دوم، با افزایش O(N) و داده‌های کوچک به فرآیند استخراج توصیفگر سوم وارد می‌شود.

MPEG-7 CE-Shape-1

برای سنگش میزان شباهت یک شکل با شکل‌های دیگر به روش پایداری و تلفکبندی (پایگاه داده-MPEG-7 CE-Shape-1) به کار می‌رود. در پایداری به‌طور معمول فاصله اقلیدسی شکل‌ها با شکل‌های دیگر در نظر گرفته می‌شود. در این مقاله برای سنگش شاید شما با گزینه باعث شده است. در تلفکبندی، مثال‌های آموزش و آزمایش مطرح می‌شود. برای همین در مقایسه با پیچیدگی تلفکبندی، می‌توان با ارائه نمایندگی در این مقاله جهت ارزیابی میزان کارآمدی ویژگی‌های پایگاه داده-MPEG-7 CE-Shape-1 به‌عنوان داده آموزشی و سپس درصد داده‌ها به‌عنوان داده آزمایشی در نظر گرفته می‌شود. جدول (4) نشان می‌دهد که SVM بهترین نتایج برای هما ویژگی‌ها با استفاده از معمولی به‌دست آمده است.

[1] Training
[2] Test

3 Probabilistic Neural Network
نتیجه‌کری

در این مقاله، یک فرآیند شبیه‌سازی معرفی شده که توانایی گروه‌بندی شکل‌ها و مدل‌های سه‌بعدی را دارد. این برنامه با روشهای مختلفی از مانند QR کار می‌کند. روش استخراج شکل‌ها و مدل‌ها با استفاده از QR بیشترین دقت را دارد. در نهایت، این مقاله نشان می‌دهد که استفاده از QR و کاهش دقت عملکرد استخراج شکل‌ها و مدل‌ها می‌تواند بهبودی در عملکرد استخراج شکل‌ها و مدل‌ها جبران کند.

[51] A. Efrat and A. Itai, "Improvements on
خديجه مهدی خانلو
dورة كارشناسي خود را در رشته مهندسي برق-کنترل در دانشگاه صنعتي امیرکبیر و دوره كارشناسي ارشد خود را در رشته مهندسي برق-مغهitarian سيستم در دانشگاه صنعتي سهند تبريز به ترتيب در سال‌هاي 1390 و 1393 به ياپان رساليد و هم اکنون دکترای رشته مهندسي برق-مغهitarian سيستم در دانشگاه مهندسي برق دانشگاه صنعتي سهند تبريز است. زمينه‌های مورد علاقه ايشان پردازش تصویر و بنياني كامپيوتر است.
نتيجه رايانه‌ای ايشان عبارت است از:
kh_mahdikhanou@sut.ac.ir

حسین ابراهيمزاد مدكر كارشناسي و كارشناسي ارشد خود را به ترتيب در سال‌های 1372 و 1375 در رشته مهندسي برق-کنترل در دانشگاه صنعتي تبريز در کسب ديدگی در زمینه های مربوط به تصویر سطح کامپیوتری و پردازش تصویر، پردازش الگو و معیارهای نرم بوده و در حال حاضر عضو هیأت علمی در مدرسه دانشگاه صنعتی سهند می باشد.
نتيجه رايانه‌ای ايشان عبارت است از:
ebrahimnezhad@sut.ac.ir

2004, pp. 93-93.

