A Dynamic Skin Detection Method Using the Fusion of 2-D Histogram-Based Features

Bahare Moradi & Mehdi Ezoji

Department of Electrical and Computer Engineering, Babol University of Technology, Mazandaran, Iran

Abstract

This paper presents a dynamic approach to Skin Detection- to separate the skin pixels from non-skin pixels in colored images. The static methods which use a fixed skin color model, will fail if there are illumination variations or different skin colors in an image. Because of contextual information the proposed algorithm will be less sensitive to the uncontrolled illumination conditions. In addition, the selection of discriminant features and the fusion of them and Bayesian classification increase the accuracy of the proposed method in comparison to the reference methods.

Keywords: Skin Detection; Skin Dynamic model, 2-D Histogram; Bayesian Rule.
1 - مقدمه

در میان فناوری‌های روبات‌کار، پردازش تصویر و بینایی ماسیون، هدف‌های پژوهش‌های بیماری‌ریزی را در مهندسی و علم رایانه تلقی می‌کنند. بی‌گاهی از استانداردهای مهم در بینایی ماسیون، اشکارسازی پوست است. این اشکارسازی در تصاویر دیجیتال است که پژوهش‌های زیادی در این زمینه صورت گرفته است. اشکارسازی پوست، یکی از پیش‌ترین پیکسل‌های زنگ پوست انسان در پیکسل‌های پوست و غیرپوست را کاشش می‌دهد. بازاریابی تاکنون فضاهای زنگ متعادل برای این منظور پیشنهاد شده است. فضاهای زنگ RGB برگرداندن در فضای زنگ ورای ذخیره و نمایش تصاویر دیجیتال است. مناطق با سه RGB اصلی قرمز، سبز و آبی است. یک از معایب این فضای که کارایی مدلپردازی بیشتری بیان می‌کند وكه حساسیت بیشتری با وابستگی به رنگ خاص است. بدین صورت دوگانه یکی از اطلاعات ارائه‌شده در خود نخواهد داشت.

اگر چه طی بررسی‌های انواع روش مدلسازی و اشکارسازی پوست تجربه‌گری شده است که مدل‌های غیرپارامتری مستقل از تبدیلات فضای رنگ استاندارد در حالی که کارایی مدلپردازی بیشتری با تغییر فضای رنگ تغییر می‌کند [1] ولی در [2] نشان داده شده است که به‌طور هر فضای رنگ یک اشکارساز به‌هم زنک می‌توان یافت.

از آنجا که مولفه‌های زنگ پوست نسبت به آن نگرانی داریم که تغییرات یک‌دست نباشد و باید از مولفه‌های زنگی به نسبته به دست یابند. در مقایسه روش گوناگون تکنیکی‌ها که در مورد تغییرات دقیق و با کاهش کارایی مدلپردازی به‌هم روبه‌رو خواهد شد.

2 Intensity

3 Chrominance

Downloaded from jsdp.rcisp.ac.ir at 16:10 +0330 on Wednesday September 23rd 2020 [DOI: 10.18869/acadpub.jsdp.13.3.63]
روش هیستوگرام در بعدی، یک مدل کلی برای پیکسل‌های غیربوسی محسوس می‌شود. در این مقاله نیاز به محسوسی مدل پوست در گام اندازه گیری تئوری، جویان مدل پوست برای یک روش صورت آزمونی به صورت جاده‌کننده محاسبه می‌شود. سپس با استفاده از مدل پوست محاسبه‌شده در گام اندازه‌گیری صورت می‌گیرد. در گام پردازش با عوامل عملیاتی منطقی، روی خوشه‌های طبقه‌بندی‌شده در گام قبل، نتیجه اشکال‌سازی به‌پایه‌ی پیش‌فرض این آدم‌ها به میان دقت ترکیبیژنر پیش‌نهادی می‌پردازد.

1- انتخاب ویژگی
روش است ویژگی‌های که به تأمین بستر پیکسل‌های پوست و غیربوسی است از هم منجر شوند، می‌توانند نرخ اشکال‌سازی را به مراتب چند گانه بهبود بخشند. از این رو در خلاصه بررسی ویژگی‌های متمایز در Normalized RGB , RGB , YCbCr , HSI , CMYK , CMY , CIE-XYZ Wrapper Method تا به‌طور تقریبی اطلاعات طبقه‌بندی‌های در بررسی و نیز دست‌بافت به‌پایه‌ی نرخ اشکال‌سازی بانزای و روش خطا کم‌تر انتخاب شده است که به آن‌ها در [7] نیز استفاده شده است.

این ویژگی‌های پیشنهادی مبتنی بر ویژگی‌های (M=max(R,G,B), R̃، M=I[R−G])، R نیز تغییرات متقابل ویژگی‌های min(R,G,B) و تعیین شده‌که در زیر شکسته نیز در R̃، R̃، (R>G) مهم‌تر از ویژگی‌های (G>R) و (G>R) به حساب می‌آید. انتخاب این ویژگی‌ها به این حکایت فیزیولوژیک که پوست نازدیک‌تر به ویژگی‌های رنگی رنگی می‌باشد. سپس این مدل مربوط به محاسبه مدل رنگی پوست و نیز مدل زیست‌گرایی غیر‌بوسی

2- گزارش پیشنهادی
این گزارش پیشنهادی در سه گامی در امرآمد، اشکال‌سازی و پوست‌برداری توصیفات می‌شد. بخش 2 نتایج آزمایش و مقایسه آن با روش مرجع را در پروسی‌گر دارد. بخش 3 نتیجه‌گیری به وکارکاری این روش می‌دهد.

1 Morphology
برای تبعیض مدل غیرپوست، یکی از کاربردهای زیست‌پزشکی غیرپوست را به صورت تصادفی از مجموعه داده‌های Invalid source specified. Machine Perception
چشم‌ها را در تصویر تعیین کرد. حال با فرض داشتن Invalid source specified. دقت تصحیح چشم‌ها مطابق شکل (2) می‌باشد.

به‌عنوان مثال و علائم ریخت‌شناختی

برای به‌دست‌آوردن اطلاعات رنگ پوست در هر

Invalid source specified. دقت تصحیح چشم‌ها مطابق شکل (2) می‌باشد.

به‌عنوان مثال و علائم ریخت‌شناختی

2 Cross co-occurrence

به‌عنوان مثال و علائم ریخت‌شناختی

1 Self co-occurrence
مولفه‌های گوناگونی از فضاهای رنگ مختلف و در نظر گرفتن میزان همبستگی پیکسل‌های پوست و غیرپوست در ناحیه HSV جهت به این ترتیب سیدیم که مؤلفه‌های فضای رنگی انتخاب K-Means را به‌عنوان ویژگی‌های ورودی الگوریتم کنیم.

شکل-۴(الف) برآگندی پیکسل‌های پوست و HSV غیرپوست متعلق به ناحیه چهار را در فضای رنگ HSV نشان می‌دهد.

با فرض این که ناحیه چهار، شامل تناوی پوست نرم‌ال، سایه افتاده و یا با روش‌هایی با ناشی از تغییرات ناحیه چهار و روش‌های است، ناحیه چهار را به پنج خوشه تقسیم می‌کنیم، اگر فرض کنیم که در ناحیه چهار، جمعیت پیکسل‌های غیرپوست (پیکسل‌های بدون نواحی چهار) را به مقدار سیبی‌متری که از نظر چهار است، مطابق شکل (۴(ب)) می‌توانیم با انتخاب دو تا گروه مجموعی ترین خوشه‌ها، ناحیه غیرپوست در چهار را با استخراج کنیم؛ البته با حذف پیکسل‌های غیرپوست از ناحیه چهار، اطلاعات رنگی پوست در ناحیه چهار را به‌دست آوریم.

(شکل-۳) نتیجه استخراج ناحیه چهار در سه فضای رنگ HSV و CMYK RGB.

[DOI: 10.18869/acadpub.jsdp.13.3.63]

دقت محاسبه‌کننده با این وجود، مدل پوست به‌دست آمده همان‌گونه که شکل (۵) نشان می‌دهد، با استفاده از عملکرد خوشبینی در این گام نمی‌توانیم پیکسل‌های پوست و غیرپوست به‌دستی تفکیک نمی‌شوند و هم‌چنان مقداری از پیکسل‌های غیرپوست در گروه پیکسل‌های پوست باقی می‌مانند. درواقع در این گام نمی‌توانیم مدل پوست را به‌طور کامل با این نتیجه استخراج ناحیه چهار در سه فضای رنگ HSV و CMYK RGB.
استخراج شده را با استفاده از روابط (1-2) به دست آورده و هیستوگرام دو بعدی پوست و بزگی‌های گوناگون متناخر با شکل (5) در شکل (6) نشان داده شده است. مشابه با شکل (1)، در شکل (6) هم یا توجه به چک‌بعد مقادیر هیستوگرام‌ها، نگارش‌شان نشان داده شده است.

نمونه‌ای از ناحیه پوستی استخراج شده مبتینی بر فضای رنگ HSV در شکل (5) نشان داده می‌شود.

(شکل-۴): مقایسه درک شده مبتینی بر مختصات چشم‌ها در Fuzzy Skin

(شکل-۳): مدل ماسک بینایی با فضای رنگ RGB

(شکل-۲): مدل ماسک بینایی با فضای رنگ HSV

(شکل-۱): مدل ماسک بینایی با فضای رنگ HSV

۲-۳-گام آموزشی در این گام، تصویر RGB ورودی را به پس‌های رنگی معروفی شده، انتقال می‌دهیم و بزگی‌های جداسازی استخراج می‌کنیم. به‌منظور محاسبه اختلال سرطانی و بزگی‌های معروفی شده که از روی تصویر آزمون استخراج شده‌اند، از
مدل‌های پوست و غیرپوست محاسبه‌شده در گام چهارم

استفاده می‌کنیم.

\[\prod_{i=1}^{n} p(x_i | S) \geq \theta \]

(\(V\))

به‌طور کلی، آماری یک تعداد گِری از مقدار می‌تواند به‌طور تجربی انتخاب و در آزمایش‌های گوناگون یکسان انتخاب شده است. اگرچه میان ویژگی‌ها مقداری وایسکو یا وجود دارد و مقدار دقیق امتحان است لابریت‌های (\(B\)) به‌دست می‌آید. با این وجود، نتایج مشاهده شده را در [1] و [2] نشان می‌دهد که ترتیب‌گیری ویژگی‌ها بر این روش، برای طبقه‌بندی باشی مناسب می‌شود.

به‌طور کلی، به‌طور کلی، شاهد می‌شود که برای انتخاب آن‌ها بزرگ‌تر

\[\theta \]

(\(V\))

برای انتخاب پوست بر صوب می‌پردازد.

نقشه احتمالی پوست برای یک پوست و غیرپوست محاسبه‌شده

(\(V\))

به‌طور کلی، یک تصویر آزمون در شکل (\(V\)) نشان می‌دهد. است. همان‌گونه که از شکل (\(V\)) یک است. ویژگی‌ها به‌طور کنون نمی‌توانند تمام یکپله‌های پوست و غیرپوست را به‌دست ترفند کنند. به‌دست آمده است. از این ویژگی‌های پیچیده‌ای تغییرات روش‌هایی و پسزمینه‌های پیچیده شدید ضایع عمل می‌کند. از این ویژگی‌های مناسب و ترکیب اطلاعات ویژگی‌های معنی‌دار، توصیف ضریب بسته‌تری از ناحیه پوستی ارائه داده و فرایند تحلیل‌سازی را به‌دست آورده‌اند.

2-پس پردازش

در این مقاله، پس از بررسی ویژگی‌های گوناگون از نگاه پوست انسان، مناسبی ارائه کرده که می‌تواند نتیجه آشکارسازی را به‌دست آورد.

همان‌گونه که می‌دانیم پوست انسان مؤلفه‌ای قزم‌زدایی بالایی دارد، با در نظر گرفتن این واقعیت، نیاز به امکانات آماده‌سازی

سال 1395 شماره 29

\[p(x, y(i,j) | C) = \frac{\sum_{k=-\lfloor \frac{y(i,j)}{2} \rfloor}^{\lfloor \frac{y(i,j)}{2} \rfloor} H_{xy}^{C}(x(i+k,j+l), y(i+k,j+l))}{\sum_{k=-\lfloor \frac{y(i,j)}{2} \rfloor}^{\lfloor \frac{y(i,j)}{2} \rfloor} H_{xy}^{C}(x(i+k,j+l), y(i+k,j+l))} \]
نتیجه گرفته شد که در بیشتر پیکسل‌های بوست مقدار مؤلفه‌های مسیز و آبی رنگ بیشتر است. از این رو ماسک پیشنهادی مطلوب (8) خواهد بود.

یک اعمال ماسک پیشنهادی روي شع تصویر از مجموعه داده برگزیند. شمار ترکیب از تصویر صادقی از مجموعه داده Compaq، انتخاب شده‌دند نتایج پیشین را ترجمه می‌کند. این از ماسک‌های نیز نشان می‌دهد که پیکسل‌های غیربوست در این مجموعه داده نیز شرایط (8) را برآورد کنند؛ بنابراین، این ماسک‌های نیز مناسب با خصوصیات از نواحی غیربوست که باشتهای بوست تشخیص داده شده‌اند. نتیجه آن‌ها را به‌ویژه دهد. شکل (8) نشان می‌دهد اعمال ماسک پیشنهادی روي شع تصویر از مجموعه داده پراثیپان [11] پراثیپان 8- اعمال ماسک پیشنهادی روی خورشید گام آن کارهای زی جلد حرفه‌ای سیار کوکر w* w بهبود می‌دهد. برای حذف حرارت‌های ابتدا یک بلوک اطراف هر پیکسل در نظر می‌گیریم. اگر بیشتر از 80٪ از پیکسل‌های موجود در همسایگان یک پیکسل که به‌عنوان پیکسل غیربوست تشخیص داده شده است، پیکسل‌های بوست باشد، آن باید یک بیان از پیکسل‌های موجود در همسایگان یک پیکسل که به‌عنوان پیکسل غیربوست تشخیص داده شده است، پیکسل‌های غیربوست باشد. این پیکسل‌ها بیان از پیکسل‌های غیربوست استخوان که در نظر گرفته می‌شود. میان مقدار True Positive و TPR به‌دست آمده است.

\[g_1(m,n) = \begin{cases} 1 & \text{max} \{R,G,B\} - \min(R,G,B) \\ 0 & \text{ویژه} \end{cases} \]

\[TPR = \frac{TP}{TP + FN} \]

\[(8) \]

\[(9) \]

نتایج آزمایش‌ها

برای ارزیابی الگوریتم پیشنهادی به‌دست‌آمده، گیری خطای طبقه‌بندی ممکن است طبقه‌بندی باشتهای پیکسل غیربوست با استفاده از پیکسل‌های بوست و یا یک پیکسل غیربوست را False Negatives (FN) و True Positives (TP) در بحث اشکارسازی پیکسل‌های بوست، پیکسل‌های بوست هستند که طبقه‌بندی پیکسل‌های بوست تشخیص داده است. پیکسل‌های بوست تشخیص داده است.

مجموعه داده شامل 78 تصویر با تعداد 16487671 تعداد پیکسل غیربوست است. اعمال ماسک پیشنهادی در (8) بر تصادف این مجموعه داده نشان می‌دهد که درصد از پیکسل‌های بوست و 586127 درصد از پیکسل‌های غیربوست در رابطه (8) صدق می‌کند.
پیکسل‌های غیربوزن تحت‌صدای اهمیت بیشتری داشته‌اند. این مقادیر با مقایسه پیکسل‌های بوزن‌های تصاویر سطحی کشتار از آمارکاری و ماکسهای درست‌نمای متغیران آن (Ground Truth) محاسبه می‌شود:

\[
FPR = \frac{FP}{FP + TN}
\]

شکل (13) نتیجه اعمال روش پیشنهادی روی تصاویر دیگری از مجموعه داده Pratheepan در مورد ارزیابی و پایبین پیکسل‌های بوزن‌های ساده و پیچیده. درصد تغییرات روشنایی در تصاویر مورد ارزیابی و پایبین پیکسل‌های غیربوزن در شکل (9) نمودارهای FPR و Groud Truth به‌دست آمده از اعمال روش پیشنهادی روی تصاویر مجموعه داده Pratheepan [11] را نشان می‌دهد. درصد تغییرات این روش از مجموعه داده کمتر از 10 درصد درصد تصاویر بود. در حالی که در ناحیه خطا در برخی روش‌ها میانگین 30 درصد می‌باشد.

29 ژانویه 1395

(Figure-8): Results of the proposed mask from Eq. (8) on some images from Pratheepan dataset [11]
ازمایش سه در این آزمایش با اعمال مقادیر آستانه گوناگون، منحنی تغییرات TPR بر حسب FPR را به‌صورت PRA و تبیین آن در شکل (11) رسم شده است. شکل (14) منحنی ROC محاسبه‌شده برای روش Pratheepan (Figure-9): Results of the proposed method on Pratheepan dataset, first row: TPR, Second row: FPR

(شکل- ۹—الف: نرخ آشکارسازی(TPR) و ب: نرخ خطأ(FPR) برای روش پیشنهادی مجموعه ماده) (Figure-10): From right column to left column: Ground truth, Results of the methods proposed in [7] and this work, respectively.
(Figure 11): From right column to left column: Ground truth, Results of the methods proposed in: [13], [11], and this work, respectively.

(Figure 12): From right column to left column: Original image, Ground truth, Results of the methods proposed in [11] and this work, respectively.
(Figure–13): From right column to left column: Original Images, Ground truth, Results of the method proposed in this work, respectively.

(Figure–14): ROC Curves corresponding to the methods proposed in this work and [14].
نتایج گیری

در این مقاله، یک روش آنالیزاسیون پویا مبنی بر هیستوگرام دوبعدی و تری روش تصمیم گیری یک معرفی شده و یک روش دیگر کارآمد ارائه شده است. استفاده از یک مدل پوست خاص برای هر تصویر، استفاده از اطلاعات پیکسل های مجاور میانی بر هیستوگرام دوبعدی و ادامه بررسی های در یک سیستم احتمالی به کارآمده در بررسی شرایط توزیعی، پیشینه پیچیده و تغییرات گروهی زاده متجه شده است. همچنین، گام پدرکش شامل مسک پوست پیشنهادی و عملیات دودویی نتیجه نهایی را به دست می آورد. مقایسه روش پیشنهادی با روش های مرجع نشان می‌دهد، روش پیشنهادی کارایی برتری نسبت به روش مرجع دارد.

5- مراجع

